
// Security Assessment 06.26.2025 - 08.08.2025

GlowSOL Liquid
Restaking & Margin
Recipe
Blueprint Finance

G l ow S O L L i q u i d Re st a k i n g & M a r g i n Re c i p e - B l u e p r i n t

F i n a n c e

Prepared by: HALBORN

Last Updated 10/17/2025

Date of Engagement: June 26th, 2025 - August 8th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

2 5

CRITICAL

4

HIGH

1

MEDIUM

3

LOW

1 3

INFORMATIONAL

4

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Risk of excessive withdrawals due to incorrect exchange rate
7.2 Minting incorrect amount of deposit tokens
7.3 Missing token mint validation may lead to multiple vulnerabilities
7.4 Incorrect conversion between assets and shares
7.5 Possibility to withdraw margin account even if withdrawals are disabled
7.6 Risk of cancelable withdrawal arbitrage or dos
7.7 Insufficient price oracle validation
7.8 Incorrect cancellation fee calculation
7.9 Risk of lp_asset tokens transfer to external account
7.10 The instruction margin_cancel_withdraw is not exposed in public api
7.11 Risk of front-running during program initialization
7.12 Insufficient accounts validation during margin deposits
7.13 Share exchange rate is constant due to incorrect unrestaking implementation

1 0 0%

7.14 Accounts are not reloaded before oracle update
7.15 Risk of incorrect earliest withdrawal timestamp calculation
7.16 Risk of losing control over the pool after authority transfer
7.17 Risk of locking funds due to unchecked mint account during margin withdrawal
7.18 Insufficient mints validation during initialization
7.19 Insufficient instruction parameters validation
7.20 Incorrect position change returned to the program adapter
7.21 Insufficient accounts validation during oracle migration
7.22 Centralization and manual intervention risk
7.23 Unused code
7.24 Insecure and inconsistent interaction with the solayer protocol
7.25 Dos risk after airdopping to deterministic pdas

8. Automated Testing

1 . I n t r o d u c t i o n

The Glow team engaged Halborn to conduct a security assessment of their Liquid Restaking Token
(LRT) Solana program beginning on June 26, 2025, and ending on August 8, 2025. The security
assessment was scoped to the Solana Programs provided in glow-v1 GitHub repository. Commit hashes
and further details can be found in the Scope section of this report.

The LRT program is a liquid restaking protocol that allows users to deposit their SOL assets to the
protocol and receive glowSOL share tokens in exchange. The deposited SOL is then staked by the protocol
administrator with Solayer. The administrator is also responsible to manage the unrestaking process and
the pool vaults in order to allow users to withdraw their funds and obtain staking rewards. Users are able
to use the protocol directly or via the Glow margin program.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 6 weeks for the engagement and assigned one full-time security engineer to
review the security of the Solana Programs in scope. The engineer is a blockchain and smart contract
security expert with advanced smart contract hacking skills, and deep knowledge of multiple blockchain
protocols.

The purpose of the assessment is to:

Identify potential security issues within the Solana Programs.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were mostly addressed by the Glow team . The main recommendations were the following:

Ensure that the shares are correctly converted to assets during instant
withdrawal.

Verify that the correct shares_after_fees amount of deposit tokens is minted to
the user.

Properly verify the deposit and withdrawal token mints to prevent account
mismatch.

Fix the conversion between assets and shares.
Ensure that withdrawals are correctly disabled if the corresponding settings flag

is activated.
Fix the instruction to cancel withdrawal to prevent potential arbitrage or DoS.
Validate the price confidence and twap value during oracle update.
Ensure the cancellation fee is calculated correctly.

https://github.com/Blueprint-Finance/glow-v1

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the program
assessment. While manual testing is recommended to uncover flaws in business logic, processes, and
implementation; automated testing techniques help enhance coverage of programs and can quickly
identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
Mapping out possible attack vectors
Thorough assessment of safety and usage of critical Rust variables and functions in scope that

could lead to arithmetic vulnerabilities.
Scanning dependencies for known vulnerabilities (cargo audit).
Local runtime testing (solana-test-framework)

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (C:N)
Low (C:L)

Medium (C:M)
High (C:H)

Critical (C:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITORY

(a) Repository: glow-v1

(b) Assessed Commit ID: 1a2ac73

(c) Items in scope:

./programs/lrt/Cargo.toml

./programs/lrt/Xargo.toml

./programs/lrt/src/instructions/migrations/migrate_lrt_pool.rs

./programs/lrt/src/instructions/migrations/migrate_oracle.rs

./programs/lrt/src/instructions/migrations/mod.rs

./programs/lrt/src/instructions/migrations/migrate_withdrawal.rs

./programs/lrt/src/instructions/oracle/update_oracle.rs

./programs/lrt/src/instructions/oracle/create_oracle.rs

./programs/lrt/src/instructions/oracle/mod.rs

./programs/lrt/src/instructions/admin/initialize.rs

./programs/lrt/src/instructions/admin/initialize_pool_mints.rs

./programs/lrt/src/instructions/admin/thaw_tokens.rs

./programs/lrt/src/instructions/admin/transfer_to_treasury.rs

./programs/lrt/src/instructions/admin/mod.rs

./programs/lrt/src/instructions/admin/freeze_tokens.rs

./programs/lrt/src/instructions/admin/configure_pool.rs

./programs/lrt/src/instructions/user/create_pending_withdrawals.rs

./programs/lrt/src/instructions/user/deposit_sol.rs

./programs/lrt/src/instructions/user/close_pending_withdrawal.rs

./programs/lrt/src/instructions/user/mod.rs

./programs/lrt/src/instructions/user/cancel_pending_withdrawal.rs

./programs/lrt/src/instructions/user/execute_withdrawal.rs

./programs/lrt/src/instructions/user/deposit_stake.rs

./programs/lrt/src/instructions/user/initiate_withdrawal.rs

./programs/lrt/src/instructions/user/instant_withdrawal.rs

./programs/lrt/src/instructions/admin_staking/deactivate_stake.rs

./programs/lrt/src/instructions/admin_staking/mod.rs

./programs/lrt/src/instructions/admin_staking/solayer_unrestake.rs

./programs/lrt/src/instructions/admin_staking/solayer_restake.rs

./programs/lrt/src/instructions/testing/mint_share_tokens.rs

./programs/lrt/src/instructions/testing/create_withdrawal_request.rs

./programs/lrt/src/instructions/testing/mod.rs

./programs/lrt/src/instructions/margin/margin_instant_withdraw.rs

./programs/lrt/src/instructions/margin/margin_deposit.rs

./programs/lrt/src/instructions/margin/margin_set_deposit_limit.rs

./programs/lrt/src/instructions/margin/margin_refresh_lrt_position.rs

https://github.com/Blueprint-Finance/glow-v1
https://github.com/Blueprint-Finance/glow-v1/commit/1a2ac73cccfd316c26703ada8724f6155b73df72

./programs/lrt/src/instructions/margin/mod.rs

./programs/lrt/src/instructions/margin/margin_init_withdraw.rs

./programs/lrt/src/instructions/margin/margin_cancel_pending_withdrawal.rs

./programs/lrt/src/instructions/margin/initialize_margin.rs

./programs/lrt/src/instructions/margin/margin_execute_withdraw.rs

./programs/lrt/src/instructions.rs

./programs/lrt/src/events.rs

./programs/lrt/src/lib.rs

./programs/lrt/src/utils/cpi.rs

./programs/lrt/src/utils/checks.rs

./programs/lrt/src/utils/mod.rs

./programs/lrt/src/utils/tests.rs

./programs/lrt/src/state/pending_withdrawals.rs

./programs/lrt/src/state/pool_oracle.rs

./programs/lrt/src/state.rs

./programs/lrt/src/errors.rs

./programs/lrt/src/seeds.rs

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/bdf50073c845cc97216f7
53c95760c2f035425e6
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/719c374c1efe44b216f9f5
f3e58dba90c870239c
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/1cd1fc003204e5703bc40
5e04f46a44cedfaa616
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c0251f7ad56f7bd2dc832
3e4fda4add9aa98a3ff
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/078095aac487a02952b5
c03eabd18986544e316e
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/364ff4aa29accea819837
62ed63263bd620bbbe8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a50fe184b42e9ce7a99e0
86bbb2c4ff94936d35a
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/f3e8b71e71542262201ce
206c9f5515235486dd8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a1174cf2df853dac8bb39
8814a88ac476f26b9a8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/341c7a8954ec7c41b1bd3
f160b52bb276cd04d22
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/36de5cace44fdc0da2dab
7adfd3d93f778a9784b

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/bdf50073c845cc97216f753c95760c2f035425e6
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/bdf50073c845cc97216f753c95760c2f035425e6
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/719c374c1efe44b216f9f5f3e58dba90c870239c
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/719c374c1efe44b216f9f5f3e58dba90c870239c
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/1cd1fc003204e5703bc405e04f46a44cedfaa616
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/1cd1fc003204e5703bc405e04f46a44cedfaa616
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c0251f7ad56f7bd2dc8323e4fda4add9aa98a3ff
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c0251f7ad56f7bd2dc8323e4fda4add9aa98a3ff
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/078095aac487a02952b5c03eabd18986544e316e
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/078095aac487a02952b5c03eabd18986544e316e
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/364ff4aa29accea81983762ed63263bd620bbbe8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/364ff4aa29accea81983762ed63263bd620bbbe8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a50fe184b42e9ce7a99e086bbb2c4ff94936d35a
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a50fe184b42e9ce7a99e086bbb2c4ff94936d35a
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/f3e8b71e71542262201ce206c9f5515235486dd8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/f3e8b71e71542262201ce206c9f5515235486dd8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a1174cf2df853dac8bb398814a88ac476f26b9a8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a1174cf2df853dac8bb398814a88ac476f26b9a8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/341c7a8954ec7c41b1bd3f160b52bb276cd04d22
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/341c7a8954ec7c41b1bd3f160b52bb276cd04d22
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/36de5cace44fdc0da2dab7adfd3d93f778a9784b
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/36de5cace44fdc0da2dab7adfd3d93f778a9784b

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/269e4d0cb31539ee73bfc
ceba83553d0247cae68
https://github.com/Blueprint-Finance/glow-v1/pull/2530/commits/a9d746a3d01e3f1d1f5dcf
07c91138e3a0772d2f
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c2b410e276e7cfa6c37dd
93a16a998459f7d68ea
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/d19defef62a66972a17f55
f7b4a7368980287a78
71ff565
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a6b2d8d9b721c486b8c75
0812cd5c109b5502dca
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/3c9830e5252785543c39f
f7c8b1b0dcb33dfcfe7
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/2cd4cc3ce816fea86b023
a4929afe94e3bf6ceac
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/ab87856732a73c45fa673
bc76406f3400974bbd5
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/9c3f78e3a4e0ae2a81efb
e6d765d2bb9cc66e477
fdc9720
f2a7e15

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

4

HIGH

1

MEDIUM

3

LOW

1 3

INFORMATIONAL

4

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

RISK OF EXCESSIVE WITHDRAWALS DUE TO INCORRECT
EXCHANGE RATE

CRITICAL SOLVED - 09/04/2025

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/269e4d0cb31539ee73bfcceba83553d0247cae68
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/269e4d0cb31539ee73bfcceba83553d0247cae68
https://github.com/Blueprint-Finance/glow-v1/pull/2530/commits/a9d746a3d01e3f1d1f5dcf07c91138e3a0772d2f
https://github.com/Blueprint-Finance/glow-v1/pull/2530/commits/a9d746a3d01e3f1d1f5dcf07c91138e3a0772d2f
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c2b410e276e7cfa6c37dd93a16a998459f7d68ea
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c2b410e276e7cfa6c37dd93a16a998459f7d68ea
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/d19defef62a66972a17f55f7b4a7368980287a78
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/d19defef62a66972a17f55f7b4a7368980287a78
https://github.com/Blueprint-Finance/glow-v1/commit/71ff5654562262592526d387566f39620a082ec3
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a6b2d8d9b721c486b8c750812cd5c109b5502dca
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a6b2d8d9b721c486b8c750812cd5c109b5502dca
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/3c9830e5252785543c39ff7c8b1b0dcb33dfcfe7
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/3c9830e5252785543c39ff7c8b1b0dcb33dfcfe7
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/2cd4cc3ce816fea86b023a4929afe94e3bf6ceac
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/2cd4cc3ce816fea86b023a4929afe94e3bf6ceac
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/ab87856732a73c45fa673bc76406f3400974bbd5
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/ab87856732a73c45fa673bc76406f3400974bbd5
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/9c3f78e3a4e0ae2a81efbe6d765d2bb9cc66e477
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/9c3f78e3a4e0ae2a81efbe6d765d2bb9cc66e477
https://github.com/Blueprint-Finance/glow-v1/commit/fdc9720e05c5467c08a6784015d40c24a5adbba9
https://github.com/Blueprint-Finance/glow-v1/commit/f2a7e154e944f6aa63bdc5362875371ae157d35f

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

MINTING INCORRECT AMOUNT OF DEPOSIT TOKENS CRITICAL SOLVED - 09/10/2025

MISSING TOKEN MINT VALIDATION MAY LEAD TO
MULTIPLE VULNERABILITIES

CRITICAL SOLVED - 09/04/2025

INCORRECT CONVERSION BETWEEN ASSETS AND
SHARES

CRITICAL SOLVED - 09/04/2025

POSSIBILITY TO WITHDRAW MARGIN ACCOUNT EVEN IF
WITHDRAWALS ARE DISABLED

HIGH SOLVED - 09/04/2025

RISK OF CANCELABLE WITHDRAWAL ARBITRAGE OR
DOS

MEDIUM SOLVED - 09/10/2025

INSUFFICIENT PRICE ORACLE VALIDATION MEDIUM SOLVED - 09/10/2025

INCORRECT CANCELLATION FEE CALCULATION MEDIUM SOLVED - 09/10/2025

RISK OF LP_ASSET TOKENS TRANSFER TO EXTERNAL
ACCOUNT

LOW SOLVED - 09/12/2025

THE INSTRUCTION MARGIN_CANCEL_WITHDRAW IS NOT
EXPOSED IN PUBLIC API

LOW SOLVED - 09/04/2025

RISK OF FRONT-RUNNING DURING PROGRAM
INITIALIZATION

LOW SOLVED - 09/12/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INSUFFICIENT ACCOUNTS VALIDATION DURING MARGIN
DEPOSITS

LOW SOLVED - 09/12/2025

SHARE EXCHANGE RATE IS CONSTANT DUE TO
INCORRECT UNRESTAKING IMPLEMENTATION

LOW SOLVED - 10/01/2025

ACCOUNTS ARE NOT RELOADED BEFORE ORACLE
UPDATE

LOW SOLVED - 09/12/2025

RISK OF INCORRECT EARLIEST WITHDRAWAL
TIMESTAMP CALCULATION

LOW SOLVED - 09/12/2025

RISK OF LOSING CONTROL OVER THE POOL AFTER
AUTHORITY TRANSFER

LOW SOLVED - 08/22/2025

RISK OF LOCKING FUNDS DUE TO UNCHECKED MINT
ACCOUNT DURING MARGIN WITHDRAWAL

LOW SOLVED - 09/12/2025

INSUFFICIENT MINTS VALIDATION DURING
INITIALIZATION

LOW SOLVED - 09/12/2025

INSUFFICIENT INSTRUCTION PARAMETERS VALIDATION LOW SOLVED - 09/12/2025

INCORRECT POSITION CHANGE RETURNED TO THE
PROGRAM ADAPTER

LOW SOLVED - 09/12/2025

INSUFFICIENT ACCOUNTS VALIDATION DURING ORACLE
MIGRATION

LOW SOLVED - 09/12/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CENTRALIZATION AND MANUAL INTERVENTION RISK INFORMATIONAL ACKNOWLEDGED

UNUSED CODE INFORMATIONAL SOLVED - 10/14/2025

INSECURE AND INCONSISTENT INTERACTION WITH THE
SOLAYER PROTOCOL

INFORMATIONAL
PARTIALLY SOLVED -

08/26/2025

DOS RISK AFTER AIRDOPPING TO DETERMINISTIC PDAS INFORMATIONAL FUTURE RELEASE

7. F I N D I N G S & T EC H D E TA I L S

7.1 R I S K O F E XC ES S I V E WI T H D R AWA L S D U E TO I N C O R R EC T

E XC H A N G E R AT E

// CRITICAL

Description
The instant_withdraw instruction allows users to immediately redeem their share tokens (e.g.,
glowSOL) for stake tokens (e.g., sSOL), typically with a fee.

However, this instruction incorrectly assumes a 1:1 exchange rate between share tokens and stake
tokens. In contrast, the deposit_stake instruction correctly uses the actual exchange rate when
converting stake tokens into share tokens.

This leads to the following exploit scenario:

1. A user deposits a certain amount of stake tokens (e.g., sSOL) through the deposit_stake
instruction.
2. Due to the current exchange rate, the user receives more share tokens than the amount of stake
tokens deposited (e.g., 1 stake token → 1.2 share tokens).
3. The user then immediately invokes instant_withdraw , which assumes a 1:1 conversion and allows
them to redeem the full amount of share tokens for an equal amount of stake tokens.
4. As a result, the user receives more stake tokens than initially deposited, effectively gaining a profit,
especially if fees are zero or negligible.

This inconsistency between deposit and withdrawal logic can lead to:

Economic imbalance in the protocol,
Loss of funds from the staking pool, and
Opportunities for abuse, particularly when fees are low or improperly configured.

programs/lrt/src/instructions/user/instant_withdrawal.rs

Proof of Concept
1. Set the sSOL price to 2.0 SOL.
2. Make sure the instant withdrawal fee is set to 0.

/// Instant withdrawal handler
///
/// # Parameters
/// - ctx: The context containing the accounts required for the instant withdraw.
/// # shares: The number of shares to withdraw, which is assumed to be 1:1 with the staked ass
pub fn instant_withdrawal_handler(ctx: Context, shares: u64) -> Result<()> {
 // assume that share token ration is 1:1 with a asset token (glowSol to sSol)
 let staked_assets = shares; // it is assumed that 1 share = 1 stake asset (sSOL)

252
253
254
255
256
257
258
259

3. Deposit 2 sSOL to the pool. This will mint 4 glowSOL to the user.
4. Instant withdraw the amount of glowSOL which corresonds to 4 sSOLs. -> user was able to withdraw
twice the originally deposited amount of sSOLs.

// halborn_01_incorrect_exchange_rate_during_instant_withdrawal()
ctx.tokens()
 .set_price(
 // Set price to 2.00 SOL +- 0.01
 &env.ssol.address,
 &TokenPrice {
 exponent: -8,
 price: 200_000_000,
 confidence: 1_000_000,
 twap: 200_000_000,
 feed_id: *env.ssol_oracle.pyth_feed_id().unwrap(),
 },
)
 .await?;
// ...
test_lrt_pool
 .deposit(
 &ctx,
 &authority,
 TokenType::Stake,
 LAMPORTS_PER_SOL * 2,
)
 .await?;
// ...
let shares_minted = staker_share_balance_after_deposit_stake - staker_share_balance_before_deposit_st
// ...
test_lrt_pool
 .instant_withdrawal(&ctx, &authority, instant_unstake_fee_ata, shares_minted)
 .await?;
// ...
let stake_withdrawn = staker_stake_balance_after_instant_withdrawal
 - staker_stake_balance_before_instant_withdrawal;

// Q.E.D. - user was able to withdraw more than deposited
assert!(stake_withdrawn > stake_deposited);

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:C/Y:N (10.0)

Recommendation
To resolve this issue, it is recommended to convert the amount of shares to withdraw to the correct
amount of stake tokens using the s̀hares_to_staked method and make sure that the PoolOracle
data is valid.

Remediation Comment

SOLVED: The Glow team resolved this issue as recommended by converting the amount of shares to
withdraw to the correct amount of stake tokens using the s̀hares_to_staked method and making sure
that the PoolOracle data is valid.

Remediation Hash

glow_lrt::state::

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:C/Y:N

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/bdf50073c845cc97216f753c95760c
2f035425e6

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/bdf50073c845cc97216f753c95760c2f035425e6
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/bdf50073c845cc97216f753c95760c2f035425e6

7. 2 M I N T I N G I N C O R R EC T A M O U N T O F D E P O S I T TO K E N S

// CRITICAL

Description
The margin_cancel_withdraw instruction is intended to allow users to cancel their previously initiated
withdrawal requests. It should effectively reverse the actions of the margin_init_withdraw instruction
by:

1. Burning the appropriate amount of withdrawal tokens (assets), and
2. Minting the correct number of deposit tokens (shares minus any applicable fees).

However, the current implementation mistakenly mints deposit tokens based on the asset amount
instead of the calculated shares_after_fees value.

This flaw can lead to several issues:

Users may receive more or fewer deposit tokens than they are entitled to, depending on the
current exchange rate.

It enables users to bypass the intended withdrawal fee, which could be exploited repeatedly.

Ultimately, this can compromise the accuracy of accounting and the integrity of the protocol's token
economics. Under normal conditions, the share exchange rate is equal to or greater than 1.0, meaning
users receive the same or more assets per share. If the instruction mistakenly mints the asset amount
instead of the shares_after_fees amount, it will always benefit the user.

Additionally, the instruction correctly transfers the shares_after_fees from the pool to the
margin_share_vault account, which is shared among all users in the same margin pool. However, the
number of minted deposit tokens should accurately reflect the amount of share tokens held in the
margin_share_vault .

This mismatch creates an inconsistency: users who cancel their withdrawal requests may receive more
shares than they are entitled to. Over time, this may prevent the protocol from fulfilling all withdrawals,
leading to a denial of service.

programs/lrt/src/instructions/margin/margin_cancel_pending_withdrawal.rs

// - Mint margin deposit tokens
crate mint_tokens(
 ctx.accounts.collateral_token_program.to_account_info(),
 ctx.accounts.deposit_mint.to_account_info(),
 ctx.accounts.user_deposit_token_account.to_account_info(),
 ctx.accounts.lrt_margin_authority.to_account_info(),
 Some(authority_seeds),
 assets,
)?;

::utils::cpi::
252
253
254
255
256
257
258
259
260

Proof of Concept
1. Expose the margin_cancel_withdraw instruction in the public API.
2. Setup LRT pool.
3. Deposit to LRT pool via a margin acccount.
4. Initiate a margin LRT withdrawal.
5. Configure cancellation fee (instant withdrawal fee must be configured due to a bug in the program)
and fee receiver account.
6. Keep stake exchange rate 1.0.
7. Cancel the withdrawal request.
8. Verify that the user obtained shares_after_fees amount of deposit tokens.

// minting_incorrect_amount_of_deposit_tokens
// ...
// initiate withdrawal
 let amount_to_withdraw = 5 * LAMPORTS_PER_SOL;
 user_b
 .lrt_initiate_withdrawal(&lrt_pool.pool, amount_to_withdraw)
 .await?;
// configure fee receiver and fee percentage
lrt_pool
 .configure_accounts(
 &ctx,
 &authority,
 &mut test_multisig,
 ConfigurePoolAccounts {
 pool_authority: None,
 pool_treasury: None,
 instant_unstake_fee_receiver: Some(instant_unstake_fee_receiver_pubkey),
 },
)
 .await?;
lrt_pool
 .configure_pool(
 &ctx,
 &authority,
 &mut test_multisig,
 LrtPoolConfig {
 enable_withdrawals: None,
 enable_deposits: None,
 enable_instant_withdrawals: None,
 stake_pyth_feed_id: None,
 asset_pyth_feed_id: None,
 pool_limit: Some(1_000 * LAMPORTS_PER_SOL),
 withdrawal_waiting_period: None,
 instant_withdrawal_fee: Some(InstantWithdrawalFee {
 numerator: 1,
 denominator: 10, // 10% fee
 }),
 cancel_pending_withdrawal_fee: None,
 },
)
 .await?;
// cancel the withdrawal request and verify the correct amount of deposit tokens minted to the user
 let deposit_mint =
 MintInfo::with_legacy(lrt_pool.pool.margin_deposit_mint(&user_b.tx.airspace()));
 let user_b_margin_account = user_b.tx.address();

 let user_deposit_token_account_before =
 get_balance(ctx.clone(), &deposit_mint, &user_b_margin_account).await;

 user_b
 .lrt_cancel_withdrawal(&lrt_pool.pool, instant_unstake_fee_ata, 0)
 .await?;

 let user_deposit_token_account_after =
 get_balance(ctx.clone(), &deposit_mint, &user_b_margin_account).await;

 let withdrawal_share_balance_after_cancel_pending_withdrawal =
 get_balance(ctx.clone(), &lrt_pool.pool.share_mint, &authority.pubkey()).await;

 assert!(
 user_deposit_token_account_after
 < user_deposit_token_account_before + amount_to_withdraw,
 "The program minted too many shares to the user."
);

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:C/D:H/Y:N (10.0)

Recommendation
To address this issue, it is recommended to make sure that correct shares_after_fees amount of
deposit tokens is minted to the user.

Remediation Comment

SOLVED: The Glow team resolved this issue by minting the correct amount of shares after fees to the
user.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/719c374c1efe44b216f9f5f3e58dba9
0c870239c

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:C/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:C/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:C/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:C/D:H/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/719c374c1efe44b216f9f5f3e58dba90c870239c
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/719c374c1efe44b216f9f5f3e58dba90c870239c

7. 3 M I S S I N G TO K E N M I N T VA L I DAT I O N M AY L E A D TO

M U LT I P L E V U L N E R A B I L I T I ES

// CRITICAL

Description

The program fails to properly validate the deposit_mint and withdrawal_mint accounts in multiple
instructions, as well as their corresponding user token accounts (user_deposit_token_account and
user_withdrawal_token_account) which may lead to multiple vulnerabilities.

R i s k O f D e p o s i t To ke n A m o u n t M a n i p u l a t i o n

The margin_init_withdraw and margin_cancel_withdraw instructions are designed to allow users to
initiate and, if necessary, cancel a withdrawal request.

margin_init_withdraw : Burns an amount of deposit tokens (representing shares) and mints the
equivalent amount of withdrawal tokens (representing assets).

margin_cancel_withdraw : Intended to do the reverse, burn the withdrawal tokens and mint back
the corresponding deposit tokens.

However, both instructions fail to properly validate the deposit_mint and withdrawal_mint
accounts, as well as their corresponding user token accounts (user_deposit_token_account and
user_withdrawal_token_account). This allows a user to swap these accounts and exploit the system.

By switching the mint accounts:

A user can burn fewer deposit tokens than required during margin_init_withdraw , retaining more
shares than they should.

Then, using margin_cancel_withdraw , they can mint more deposit tokens than they originally
burned.

Since the share exchange rate is generally ≥ 1.0, this manipulation will always result in a net gain for
the user. An attacker could repeat this loop multiple times to inflate their deposit token balance without
actually depositing collateral, effectively draining value from the protocol.

This issue represents a critical economic vulnerability, enabling:

Unauthorized minting of deposit tokens
Circumvention of share-asset accounting
Potential loss of solvency for the protocol over time

#[account(
 mut,
 mint::authority = lrt_margin_authority
)]
pub deposit_mint: Box>,

#[account(
 mut,

94
95
96
97
98
99
100
101
102

R i s k O f I n c o r r e c t L R T P o s i t i o n R e f r e s h

The margin_refresh_lrt_position instruction allows anyone to refresh an LRT position account.
However, it does not properly validate the deposit_mint and withdrawal_mint accounts. This
oversight allows an attacker to swap these two accounts, which can result in incorrect position price
calculations.

Such manipulation could artificially inflate the value of the deposited assets, enabling users to borrow
more than they are legitimately entitled to. Furthermore, since this instruction is permissionless, an
attacker could refresh multiple LRT positions on behalf of other users. Even though this requires only
minimal transaction fees, doing so across many accounts could significantly distort the protocol’s
accounting.

 mint::authority = lrt_margin_authority
)]
pub withdrawal_mint: Box>,

#[account(
 mut,
 token::mint = deposit_mint,
 token::authority = margin_account
)]
pub user_deposit_token_account: Box>,

#[account(
 mut,
 token::mint = withdrawal_mint,
 token::authority = margin_account
)]
pub user_withdrawal_token_account: Box>,

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

#[account(
 mut,
 mint::authority = lrt_margin_authority
)]
pub deposit_mint: Box>,

#[account(
 mut,
 mint::authority = lrt_margin_authority
)]
pub withdrawal_mint: Box>,

103
104
105
106
107
108
109
110
111
112
113

#[account(
 mut,
 token::mint = deposit_mint,
 token::authority = margin_account,
)]
pub user_deposit_token_account: Box>,

#[account(
 mut,
 token::mint = withdrawal_mint,
 token::authority = margin_account,
)]
pub user_withdrawal_token_account: Box>,

135
136
137
138
139
140
141
142
143
144
145
146
147

The difference between deposit and withdrawal token prices may seem small in individual cases, but
when exploited systematically, it poses a serious risk to the protocol’s economic stability.

Proof of Concept

R i s k O f D e p o s i t To ke n A m o u n t M a n i p u l a t i o n

1. Emulate the share exchange rate to be greater than 1.0.
2. Fix the share_to_asset and asset_to_share conversion methods.
3. Initiate withdrawal request and swap deposit and withdrawal mints.
4. Cancel withdrawal request and swap deposit and withdrawal mints.
5. Verify that the user has the same amount of deposit tokens minus fees as at the beginning.

#[account(
 mint::authority = lrt_margin_authority
)]
pub deposit_mint: Box<InterfaceAccount<'info, Mint>>,

#[account(
 mint::authority = lrt_margin_authority
)]
pub withdrawal_mint: Box<InterfaceAccount<'info, Mint>>,

53
54
55
56
57
58
59
60
61

write_adapter_result(
 &*ctx.accounts.margin_account.load()?,
 &AdapterResult {
 position_changes: vec![
 (
 ctx.accounts.deposit_mint.key(),
 vec![PositionChange::Price(PriceChangeInfo::new(
 prices.deposit_note_price,
 prices.deposit_note_conf,
 prices.deposit_note_twap,
 prices.deposit_publish_time,
 prices.deposit_exponent,
))],
),
 (
 ctx.accounts.withdrawal_mint.key(),
 vec![PositionChange::Price(PriceChangeInfo::new(
 prices.withdrawal_note_price,
 prices.withdrawal_note_conf,
 prices.withdrawal_note_twap,
 prices.withdrawal_publish_time,
 prices.withdrawal_exponent,
))],
),
],
 },
)?;

glow_margin::99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

The test fails as the user receives more deposit tokens as expected.

R i s k O f I n c o r r e c t L R T P o s i t i o n R e f r e s h

1. Deposit tokens to the LRT pool.
2. Emulate share exchange rate being greater than 1.0. (ie. 1.33)
3. Initiate a withdrawal in order to mint the withdrawal tokens and burn deposit tokens.
4. Invoke the margin_lrt_refresh_position and swap the withdrawal and deposit mints.
5. The withdrawal mint valuation will be artificially inflated by factor 1.33 allowing user to borrow more
than entitled.

// Withdrawal mint before LRT refresh with swapped mints
AccountPosition {
 token: 3SDh8erPpiUJMpjqAijUD4JL1h6tujKi7xuksV3mhdWP,
 address: 6MsPUXCEUBfv25M4ABYiEt6tpS46hCph5r519Dbj7MTY,
 adapter: LRtc6q4AhSr3k9dSLXpTRoAP1hBrgbQSiFkuQpuHaq3,
 value: "3999.99999",
 balance: 39999999900,
 balance_timestamp: 1753469533,
 price: PriceInfo {
 value: 10000000000,
 timestamp: 1753469533,
 exponent: -8,
 is_valid: 1,
 _reserved: [
 0,
 0,
 0,
],
 },
 kind: Collateral,
 exponent: -9,
 value_modifier: 95,
 flags: AdapterPositionFlags(
 0,
),
 max_staleness: 0,
 is_token_2022: 0,
 token_features: TokenFeatures(
 0,
),
},

// Withdrawal mint after LRT refresh with swapped mints -> inflated value due to incorrect withdrawal
AccountPosition {
 token: 3SDh8erPpiUJMpjqAijUD4JL1h6tujKi7xuksV3mhdWP,
 address: 6MsPUXCEUBfv25M4ABYiEt6tpS46hCph5r519Dbj7MTY,
 adapter: LRtc6q4AhSr3k9dSLXpTRoAP1hBrgbQSiFkuQpuHaq3,
 value: "5333.3333066666",
 balance: 39999999900,
 balance_timestamp: 1753469533,
 price: PriceInfo {
 value: 13333333300,
 timestamp: 1753469533,
 exponent: -8,
 is_valid: 1,
 _reserved: [
 0,
 0,
 0,
],
 },
 kind: Collateral,
 exponent: -9,
 value_modifier: 95,
 flags: AdapterPositionFlags(
 0,
),
 max_staleness: 0,
 is_token_2022: 0,

 token_features: TokenFeatures(
 0,
),
},

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N (10.0)

Recommendation
To address this issue, it is recommended to validate the deposit_mint and withdrawal_mint account
and ensure that they have to the expected address.

Remediation Comment

SOLVED: The Glow team resolved this issue by correctly verifying the addresses of the deposit and
withdrawal mints.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/1cd1fc003204e5703bc405e04f46a4
4cedfaa616

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/1cd1fc003204e5703bc405e04f46a44cedfaa616
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/1cd1fc003204e5703bc405e04f46a44cedfaa616

7. 4 I N C O R R EC T C O N V E RS I O N B E T WE E N AS S E TS A N D

S H A R ES

// CRITICAL

Description
The program calculates the share exchange rate which corresponds to the amount of assets (SOL)
received in exchange for 1 share (glowSOL).

The exchange rate is calculated in the update method as:

exchange_rate = total_assets / share_balance

Based on this, the correct formulas for converting between assets and shares are:

shares -> assets: assets = shares * exchange_rate
assets -> shares: shares = assets / exchange_rate

However, in the current implementation, these conversion formulas are mistakenly swapped. This means:

When converting shares to assets, the program incorrectly divides instead of multiplying.
When converting assets to shares, it multiplies instead of dividing.

This inversion leads to incorrect accounting of user balances, potentially resulting in over-crediting or
under-crediting users during deposits, withdrawals, or internal operations. Over time, this can create
systemic imbalances in the pool and expose the protocol to financial risk or exploitability.

programs/lrt/src/state/pool_oracle.rs

programs/lrt/src/state/pool_oracle.rs

Proof of Concept
1. Deposit assets.
2. Restake the assets.

let exchange_rate = total_assets.safe_div(share_balance)?;108

pub fn shares_to_assets(&self, shares: u64) -> Result {
 let shares = Number128::from_decimal(shares, self.share_decimals);
 let assets = shares.safe_div(self.share_to_asset_exchange_rate()?)?;
 Ok(assets.as_u64(-9)) // SOL decimals
}

pub fn assets_to_shares(&self, assets: u64) -> Result {
 let assets = Number128::from_decimal(assets, -9);
 let shares = assets.safe_mul(self.share_to_asset_exchange_rate()?)?;
 Ok(shares.as_u64(self.share_decimals))
}

151
152
153
154
155
156
157
158
159
160
161

3. Unrestake the assets and emulate a change in the share exchange rate.

For the purpose of this POC, the rate change was emulated manually by multiplying the unrestaked
sSOL token amount by a factor of 1.5 to emulate the staking rewards as shown in the
unrestake_fixed_rewards_handler function below. This is necessary because the current
implementation does not update the share exchange rate correctly. For more details, please refer to
the HAL-014 finding: Share exchange rate is constant due to incorrect unrestaking implementation.

pub fn unrestake_fixed_rewards_handler(
 ctx: Context<SolayerUnrestakeFixedRewards>,
 tokens_in: u64,
) -> Result<()> {
 require!(tokens_in > 0, LRTPoolError::InvalidAmount);

 ctx.accounts.lst_ata.reload()?;
 let lp_solayer_amount_before = ctx.accounts.lst_ata.amount;

 unrestake(ctx.accounts.solayer_unrestake(), tokens_in)?;

 ctx.accounts.lst_ata.reload()?;

 let lp_solayer_amount_after = ctx.accounts.lst_ata.amount;
 let mint_lp_sol_amount = lp_solayer_amount_after
 .checked_sub(lp_solayer_amount_before)
 .ok_or(LRTPoolError::NumericUnderflow)?;

 // we need to emulate staking rewards, so we will multiply the lp_sol_amount by a factor > 1.
 // to emulate that we have received more SOLs
 // factor 1.5
 // - numerator 3
 // - denumerator 2
 let sol_amount_with_rewards = mint_lp_sol_amount
 .checked_mul(3)
 .unwrap()
 .checked_div(2)
 .unwrap();

 // burn the LP ssol token
 burn_lp_ssol_token(&ctx, tokens_in)?;

 //mint the LP sol token
 mint_lp_sol_token(&ctx, sol_amount_with_rewards)?;
 ctx.accounts.lp_asset_mint.reload()?;
 ctx.accounts.lp_stake_mint.reload()?;

 msg!(
 "Unrestaked {} sSOL for {} SOL.",
 tokens_in,
 sol_amount_with_rewards
);

 let clock = Clock::get()?;
 ctx.accounts.pool_oracle.update(
 &clock,
 &ctx.accounts.lp_asset_mint,
 &ctx.accounts.lp_share_mint,
 &ctx.accounts.lp_stake_mint,
 None,
)?;

 Ok(())
 }

4. Initiate a withdrawal.
5. The pending withdrawal request assets must be equal to 1.5*shares_to_withdraw.

// halborn_02_incorrect_conversion_shares_to_assets
// ...
lrt_pool
 .admin_solayer_unrestake_fixed_rewards(
 &ctx,

solayer::cpi::

 &authority,
 &mut test_multisig,
 &SolayerAccounts {
 pool: test_solayer.pool,
 program: ID,
 lst_mint: test_solayer.lst_mint,
 rst_mint: test_solayer.rst_mint,
 vault: test_solayer.lst_vault,
 },
 20 * LAMPORTS_PER_SOL,
)
 .await?;

let pool_oracle_1 =
 get_anchor_account::<PoolOracle>(&ctx.rpc(), &lrt_pool.pool.oracle_v2()).await?;
// share to asset exchange rate should change so check that it is not 1.0 anymore
let share_oracle_price = pool_oracle_1
 .share_to_asset_exchange_rate()
 .unwrap()
 .as_u64(-8);
assert_ne!(
 share_oracle_price, 100_000_000,
 "share to asset exchange rate should have changed but it is still 1.0"
);

assert_eq!(
 share_oracle_price, 133_333_333,
 "share to asset exchange rate should be 1.33"
);
user_b.refresh_all_pool_positions().await?;

user_b.lrt_create_pending_withdrawal(&lrt_pool.pool).await?;
let pending_withdrawals = get_anchor_account::<PendingWithdrawals>(
 &ctx.rpc(),
 &lrt_pool.pool.pending_withdrawals(user_b.address()),
)
.await?;
assert_eq!(pending_withdrawals.owner, *user_b.address());
assert_eq!(pending_withdrawals.total_pending_assets, 0);
user_b
 .lrt_initiate_withdrawal(&lrt_pool.pool, 5 * LAMPORTS_PER_SOL)
 .await?;

let pending_withdrawals = get_anchor_account::<PendingWithdrawals>(
 &ctx.rpc(),
 &lrt_pool.pool.pending_withdrawals(user_b.address()),
)
.await?;

assert!(pending_withdrawals.total_pending_assets > pending_withdrawals.total_pending_shares,
 "For the share exchange rate 1.33, the pending withdrawal must have more assets than shares");

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (9.4)

solayer::

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N

Recommendation
To address this issue, it is recommended to correct the conversion calculations as suggested in the
description above.

Remediation Comment

SOLVED: The Glow team resolved this issue by correcting the conversion between assets and shares.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c0251f7ad56f7bd2dc8323e4fda4add
9aa98a3ff

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c0251f7ad56f7bd2dc8323e4fda4add9aa98a3ff
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c0251f7ad56f7bd2dc8323e4fda4add9aa98a3ff

7. 5 P O S S I B I L I T Y TO WI T H D R AW M A RG I N AC C O U N T EV E N I F

WI T H D R AWA L S A R E D I SA B L E D

// HIGH

Description
The margin_execute_withdraw instruction allows users to finalize their withdrawal requests and
retrieve their funds after the required waiting period has passed.

While it is expected to verify that withdrawals are currently enabled, the instruction does not check the
withdrawals_enabled() flag. As a result, users can still execute withdrawals even when withdrawals
are explicitly disabled by the protocol.

This oversight can undermine protocol controls and potentially lead to unintended or unauthorized fund
outflows.

programs/lrt/src/instructions/margin/margin_execute_withdraw.rs

Proof of Concept
1. Configure the LRT pool and disable the withdrawals.
2. Execute a withdrawal and check that the instruction fails.

// halborn_07_withdraw_even_if_withdrawals_disabled
lrt_pool
 .configure_pool(
 &ctx,
 &authority,
 &mut test_multisig,
 LrtPoolConfig {
 enable_withdrawals: Some(false), // disable withdrawals
 enable_deposits: None,
 enable_instant_withdrawals: None,
 stake_pyth_feed_id: None,
 asset_pyth_feed_id: None,
 pool_limit: None,
 withdrawal_waiting_period: None,
 instant_withdrawal_fee: None,
 cancel_pending_withdrawal_fee: None,
 },
)
 .await?;

assert!(
 user_b
 .lrt_execute_withdrawal(&lrt_pool.pool, 0)
 .await
 .is_err(),
 "The user was able to complete a withdrawal despite withdrawals being disabled."
);

#[account(
 has_one = asset_mint,
 seeds = [LRT_POOL_SEED, share_mint.key().as_ref()], bump,
)]
pub pool: AccountLoader<'info, LrtPoolV2>,

40
41
42
43
44

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N (7.5)

Recommendation
To address this issue, it is recommended to verify that withdrawals are enabled before allowing users to
execute a withdrawal.

Remediation Comment

SOLVED: The Glow team resolved this issue by ensuring the withdrawal can be executed only if the pool is
enabled.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/078095aac487a02952b5c03eabd18
986544e316e

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/078095aac487a02952b5c03eabd18986544e316e
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/078095aac487a02952b5c03eabd18986544e316e

7. 6 R I S K O F CA N C E L A B L E WI T H D R AWA L A R B I T R AG E O R

D O S

// MEDIUM

Description
The margin_cancel_withdraw and cancel_withdraw instructions allow users to cancel a pending
withdrawal request—but only if the withdrawal waiting period has not yet expired. When invoked, the
instructions convert the pending withdrawal assets back into shares using the current exchange rate. It
then compares the newly calculated number of shares with the original number of shares that were
locked for withdrawal. The user is refunded only if the new share amount is greater than or equal to the
original.

This approach introduces several vulnerabilities:

1. Denial of Service in Normal Conditions
In typical scenarios, the share exchange rate increases over time. As a result, converting assets back
to shares will yield fewer shares than initially locked, causing the instruction to fail. This effectively
prevents users from canceling their withdrawals, leading to a denial-of-service situation.
2. Potential Exploit on Rate Decrease
In less common cases, such as validator slashing or high withdrawal fees, the exchange rate may
drop. If this happens before the waiting period expires, users could cancel their pending withdrawals
and, due to the lower exchange rate, receive more shares than originally locked. If the cancellation
fee is small enough, this could be economically beneficial and exploitable.

These issues have critical implications for the protocol’s availability and economic security, and should
be addressed to ensure robust and fair behavior.

programs/lrt/src/instructions/margin/margin_cancel_pending_withdrawal.rs

Proof of Concept
1. Deposit assets.
2. Initiate a withdrawal.
3. Set share exchange rate to 1.3333

require!(
 waiting_period_passed,
 LRTPoolError::WithdrawWaitingPeriodPassed
);

let shares = pending_withdrawal.pending_shares;
let assets = pending_withdrawal.pending_assets;

pending_withdrawals.make_empty(withdrawal_index as usize)?;

let new_shares = ctx.accounts.pool_oracle.assets_to_shares(assets)?;
require!(shares <= new_shares, LRTPoolError::InvalidAmount);

202
203
204
205
206
207
208
209
210
211
212
213

4. Cancel the withdrawal request before the waiting period expires.
5. Due to rounding error, the previous amount of shares was 20.0, however the new amount is
19.9999998.
6. The instruction will fail.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:M/Y:N (6.3)

Recommendation
To address this issue, it is recommended to refund the originally locked amount of shares instead of the
amount based on the current share exchange rate. This will allow fair and transparent refunds that will
favor the pool's economic stability.

Remediation Comment

SOLVED: The Glow team resolved this finding by refunding the originally locked amount of shares.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/364ff4aa29accea81983762ed63263
bd620bbbe8

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:M/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/364ff4aa29accea81983762ed63263bd620bbbe8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/364ff4aa29accea81983762ed63263bd620bbbe8

7.7 I N S U F F I C I E N T P R I C E O R AC L E VA L I DAT I O N

// MEDIUM

Description
The update_oracle instruction allows anyone to update the stake price and store it in the designated
PoolOracle account.

However, the instruction does not validate the confidence interval and the deviation of the current price
from the time-weighted average price. Without these checks, an attacker could submit a price update
with a low confidence level, potentially introducing inaccurate or manipulated pricing into the system.

This lack of validation creates a risk where users may deposit or withdraw tokens at unfair or incorrect
exchange rates, undermining the economic stability and integrity of the protocol.

programs/lrt/src/instructions/oracle/update_oracle.rs

Proof of Concept
1. Emulate a stake oracle price where the confidence interval is 100% of the current price and the twap
value is 10 times lower than the current price.
2. Update the oracle.
3. The instruction will pass due to the missing checks.

// halborn_18_non_validated_price
ctx.tokens()
 .set_price(
 &env.ssol.address,
 &TokenPrice {
 exponent: -8,
 price: 100_000_000,
 confidence: 100_000_000, // 100% of current price
 twap: 10_000_000, // moving average 10x lower than current price
 feed_id: *env.ssol_oracle.pyth_feed_id().unwrap(),
 },
)
 .await?;

lrt_pool
 .update_oracle(
 &ctx,

let oracle_data = ctx.accounts.stake_price_feed.try_borrow_data()?;
let update = PriceUpdateV2::try_deserialize(&mut &oracle_data[..])?;

let price_message = update.get_price_no_older_than(
 clock,
 MAX_ORACLE_STALENESS_SECONDS,
 &pool.stake_pyth_feed_id,
)?;

oracle.update(
 clock,
 &ctx.accounts.lp_asset_mint,
 &ctx.accounts.lp_share_mint,
 &ctx.accounts.lp_stake_mint,
 Some(&price_message),
)?;

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

 &user_a_wallet,
 derive_pyth_price_feed_account(env.ssol_oracle.pyth_feed_id().unwrap(), None, None),
).await?;

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N (6.3)

Recommendation
To address this issue, it is recommended to validate both the price confidence interval and the deviation
from the time-weighted average price (TWAP). Price updates should be rejected if the confidence interval
exceeds a predefined threshold or if the reported price significantly deviates from the TWAP. These
checks help ensure the reliability and stability of oracle data, reducing the risk of manipulation and
maintaining the economic integrity of the protocol.

Remediation Comment

SOLVED: The Glow team resolved this issue by validating both the price confidence interval and the
deviation from the time-weighted average price (TWAP).

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a50fe184b42e9ce7a99e086bbb2c4ff
94936d35a

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a50fe184b42e9ce7a99e086bbb2c4ff94936d35a
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a50fe184b42e9ce7a99e086bbb2c4ff94936d35a

7. 8 I N C O R R EC T CA N C E L L AT I O N F E E CA LC U L AT I O N

// MEDIUM

Description
The instructions cancel_pending_withdrawal and margin_cancel_withdraw enable users to cancel
their withdrawal requests. The program refunds the locked assets to the user and deducts a cancellation
fee paid to the protocol. However, the cancellation fees are calculated using the LrtPoolV2
configuration fields instant_withdrawal_fee_* instead of the intended
cancel_pending_withdrawal_* configuration fields.

This oversight could lead to incorrect or unexpected fees being charged to users.

programs/lrt/src/instructions/user/cancel_pending_withdrawal.rs

Proof of Concept
1. Configure the instant withdrawal fee to be 1%.
2. Configure the cancellation fee to be 0%.
3. Deposit.
4. Initiate a withdrawal.
5. Cancel the withdraw request.
6. Check that no cancellation fee is deduced -> the test will fail.

// incorrect_cancellation_fee
// ...
// Change the deposit limit
 test_lrt_pool
 .configure_pool(
 &ctx,
 &authority,
 &mut test_multisig,
 LrtPoolConfig {
 enable_withdrawals: None,
 enable_deposits: None,
 enable_instant_withdrawals: None,
 stake_pyth_feed_id: None,
 asset_pyth_feed_id: None,
 pool_limit: Some(1_000 * LAMPORTS_PER_SOL),
 withdrawal_waiting_period: None,
 instant_withdrawal_fee: Some(InstantWithdrawalFee {
 numerator: 1,

let fee_shares_amount = new_shares
 .checked_mul(instant_withdraw_fee_numerator as u64)
 .ok_or(LRTPoolError::Overflow)?
 .checked_div(instant_withdraw_fee_denominator as u64)
 .ok_or(LRTPoolError::Overflow)?;

161
162
163
164
165

let fee_shares_amount = new_shares
 .checked_mul(instant_withdraw_fee_numerator as u64)
 .ok_or(LRTPoolError::Overflow)?
 .checked_div(instant_withdraw_fee_denominator as u64)
 .ok_or(LRTPoolError::Overflow)?;

232
233
234
235
236

 denominator: 100, // 1% fee
 }),
 cancel_pending_withdrawal_fee: None, // 0% cancellation fee
 },
)
 .await?;
// ...
 test_lrt_pool
 .cancel_pending_withdrawal(
 &ctx,
 &authority,
 instant_unstake_fee_ata,
 index_last_pending_withdrawal as u8,
)
 .await?;
// ...
 assert!(
 fee_receiver_share_balance_after_cancel_pending_withdrawal
 == fee_receiver_share_balance_before_cancel_pending_withdrawal,
 "Fee receiver share balance should be the same because no fees were charged"
);

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (5.0)

Recommendation
To address this issue, it is recommended to use the cancel_pending_withdrawal_* parameters when
calculating the cancellation fees.

Remediation Comment

SOLVED: The Glow team resolved this issue by using the correct parameters to calculate the cancellation
fee.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/f3e8b71e71542262201ce206c9f551
5235486dd8

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/f3e8b71e71542262201ce206c9f5515235486dd8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/f3e8b71e71542262201ce206c9f5515235486dd8

7. 9 R I S K O F L P_AS S E T TO K E N S T R A N S F E R TO E X T E R N A L

AC C O U N T

// LOW

Description
The margin_deposit instruction allows users to deposit assets into the LRT margin account. As part of
this process, it mints lp_asset tokens to a designated lp_asset_token_account , which is used to
track the deposited assets.

This token account is expected to be a specific PDA (Program Derived Address), with the program set as
its authority. However, the instruction does not verify that the provided lp_asset_token_account is
actually the correct PDA.

As a result, an attacker could supply a malicious token account not controlled by the program, causing
lp_asset tokens to be minted to an unauthorized account. Since the program doesn't control this
account, it would not be able to burn the tokens, which would ultimately prevent users from
withdrawing the assets they previously deposited — effectively disrupting the entire withdrawal
mechanism. This issue only impacts the margin_execute_withdraw instruction. As an alternative, users
may still be able to withdraw the liquid staking assets (e.g., sSOL), provided that there is sufficient
liquidity in the pool and their withdrawal request waiting period has not yet expired—since expired
requests can no longer be canceled.

programs/lrt/src/instructions/margin/margin_deposit.rs

programs/lrt/src/instructions/margin/margin_deposit.rs

Proof of Concept
1. Invoke the margin_deposit instruction and supply an incorrect lp_asset_token_account - not the
expected PDA, but correct mint.
2. The instruction will pass successfully and mint tokens to the incorrect account.

// get the lp_asset mint
let lp_asset_mint_info = MintInfo::with_legacy(lrt_pool.lp_asset_mint());
// create a new account for the lp_asset mint
let incorrect_lp_asset_token_account_ix = lp_asset_mint_info
 .create_associated_token_account_idempotent(self.address(), &self.signer());

#[account(mut)]
pub lp_asset_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

108
109

crate mint_tokens(
 ctx.accounts.lp_token_program.to_account_info(),
 ctx.accounts.lp_asset_mint.to_account_info(),
 ctx.accounts.lp_asset_token_account.to_account_info(),
 ctx.accounts.pool.to_account_info(),
 Some(pool_seeds),
 assets,
)?;

::utils::cpi::233
234
235
236
237
238
239
240

let incorrect_lp_asset_account = lp_asset_mint_info.associated_token_address(self.address());
instructions.push(incorrect_lp_asset_token_account_ix);
// Deposit into the LRT program and supply the incorrect lp_asset_token_account
invoke_ix.push(lrt_pool.margin_deposit_incorrect_lp_account(
 self.airspace(),
 *self.address(),
 incorrect_lp_asset_account,
 deposit_amount,
));

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:H/D:N/Y:N (4.4)

Recommendation
To address this issue, it is recommended to verify that the lp_asset_token_account has the correct
address.

Remediation Comment

SOLVED: The Glow team resolved this issue by verifying that the lp_asset_token_account corresponds
to the expected asset vault account.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a1174cf2df853dac8bb398814a88ac
476f26b9a8

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:H/D:N/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a1174cf2df853dac8bb398814a88ac476f26b9a8
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a1174cf2df853dac8bb398814a88ac476f26b9a8

7.1 0 T H E I N ST RU C T I O N M A RG I N_CA N C E L_WI T H D R AW I S

N OT E X P O S E D I N P U B L I C A P I

// LOW

Description
The margin_cancel_withdraw instruction is intended to allow users to cancel their previously initiated
withdrawal requests. However, this instruction is not exposed publicly and cannot be invoked externally,
effectively disabling the cancellation feature.

As a results, users are unable to cancel withdrawal requests, even if they change their mind or made a
mistake. It may lead to locked funds, forcing users to wait for the withdrawal to complete or expire before
regaining control over their assets. In some scenarios, it may introduce unnecessary risk, particularly if
market conditions change while the user is unable to act on their position.

Proof of Concept
Invoke the margin_cancel_withdraw instruction manually. The program will fail with a
InstructionFallbackNotFound error.

#[tokio::test(flavor = "multi_thread")]
async fn halborn_05_missing_margin_cancel_ix() -> Result<()> {
 const MARGIN_CANCEL_IX_DISCRIMINATOR: [u8; 8] = [255, 3, 26, 130, 76, 236, 80, 139];
 let mut ctx = margin_test_context!("restake");

 let ix = Instruction {
 program_id: GLOW_LRT_PROGRAM,
 accounts: vec![],
 data: MARGIN_CANCEL_IX_DISCRIMINATOR.to_vec(),
 };
 send_and_confirm(&ctx.rpc(), &[ix], &[]).await?;
 Ok(())
}

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:H/I:N/D:N/Y:M (4.4)

anyhow::

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:H/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:H/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:H/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:H/I:N/D:N/Y:M

Recommendation
To address this issue, it is recommended to include the margin_cancel_withdraw instruction into the
glow_lrt module and expose it to the public API.

Remediation Comment

SOLVED: The Glow team resolved this issue by publicly exposing the instruction and thus making it
accessible in the public API.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/341c7a8954ec7c41b1bd3f160b52bb
276cd04d22

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/341c7a8954ec7c41b1bd3f160b52bb276cd04d22
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/341c7a8954ec7c41b1bd3f160b52bb276cd04d22

7.1 1 R I S K O F F RO N T- RU N N I N G D U R I N G P RO G R A M

I N I T I A L I Z AT I O N

// LOW

Description
The initialize instruction is used to set up the initial state of the new version of the program.
However, the instruction does not restrict who can invoke it, meaning that anyone can initialize the
program.

This lack of access control opens the door to front-running attacks, where an unauthorized party could
initialize the program before the intended authority. Such a scenario could lead to loss of control over the
protocol and may require redeploying the program to recover from the misconfiguration.

programs/lrt/src/instructions/admin/initialize.rs

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:L/D:L/Y:N (3.1)

Recommendation
To address this issue, it is recommended to restrict the initialization instruction so that it can only be
invoked by a predefined, trusted authority. This ensures that only authorized parties can initialize the
program and prevents unintended or malicious setups.

Remediation Comment

SOLVED: The Glow team resolved this issue by ensuring that the signer of the initialize instruction
corresponds to an expected account.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/36de5cace44fdc0da2dab7adfd3d93f
778a9784b

#[derive(Accounts)]
pub struct InitializeV2<'info> {
 // The multisig wallet that will become the pool authority
 #[account(mut)]
 signer: Signer<'info>,

31
32
33
34
35

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:L/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:L/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:L/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:M/I:L/D:L/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/36de5cace44fdc0da2dab7adfd3d93f778a9784b
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/36de5cace44fdc0da2dab7adfd3d93f778a9784b

7.1 2 I N S U F F I C I E N T AC C O U N TS VA L I DAT I O N D U R I N G M A RG I N

D E P O S I TS

// LOW

Description
The margin_deposit instruction allows a user to deposit assets into a margin account and receive the
corresponding amount of shares in return. However, the instruction does not properly validate the
user_deposit_token_account and pool_asset_vault addresses.

This introduces two key risks:

1. Incorrect User Token Account Ownership:
A user can supply a token account with the correct mint but owned by a different address. This breaks
expected ownership assumptions and could prevent the margin program from correctly interacting with
or managing these tokens.
2. Arbitrary Pool Asset Vault:
The instruction allows specifying a pool_asset_vault that is owned by the pool but not necessarily
the designated associated token account (ATA). If an arbitrary token account is used, it may
complicate administrative operations or disrupt program assumptions.

programs/lrt/src/instructions/margin/margin_deposit.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N (3.0)

Recommendation
To address this finding, it is recommended to fully validate the user_deposit_token_account and
pool_asset_vault accounts and make sure that the accounts have the correct owner (authority) and
address.

Remediation Comment

#[account(mut)]
pub user_deposit_token_account: Box>,

#[account(mut)]
pub user_asset_token_account: Box>,

/// We can't transfer wrapped SOL directly to the pool treasury without requiring an
/// addtiional ATA. To avoid this, we send the SOL to the pool vault instead, and
/// rely on the pool's admins to transfer funds from the vault to the pool treasury.
#[account(
 mut,
 token::authority = pool
)]
pub pool_asset_vault: Box>,

121
122
123
124
125
126
127
128
129
130
131
132
133
134

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N

SOLVED: The Glow team resolved this issue by ensuring the user_deposit_token_account ,
user_asset_token_account and pool_asset_vault have the correct authority and mint.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/269e4d0cb31539ee73bfcceba83553
d0247cae68

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/269e4d0cb31539ee73bfcceba83553d0247cae68
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/269e4d0cb31539ee73bfcceba83553d0247cae68

7.1 3 S H A R E E XC H A N G E R AT E I S C O N STA N T D U E TO

I N C O R R EC T U N R ESTA K I N G I M P L E M E N TAT I O N

// LOW

Description

The solayer_unrestake instruction allows the pool authority to convert sSOL tokens back into LP-
SOLAYER tokens. During this process, it burns lp_stake tokens and mints lp_asset tokens, which are
used to track asset ownership and determine the share exchange rate.

However, the instruction fails to account for:

Staking rewards that may have accumulated, and
Potential withdrawal fees.

As a result:

The number of lp_asset tokens minted always exactly matches the amount of lp_stake tokens
burned.

This causes the share exchange rate to remain fixed at 1.0, regardless of any real changes in asset
value.

While this is considered a LOW severity issue from an access-control perspective (since only the pool
authority can invoke solayer_unrestake), the consequences are critical for the protocol's integrity:

The incorrect exchange rate calculation leads to inaccurate share conversions.
These inaccuracies may accumulate over time, degrading the economic consistency of the system.
It also opens the door to exchange rate exploits, where attackers could manipulate conversions for

unfair gain.

programs/lrt/src/instructions/admin_staking/solayer_unrestake.rs

pub fn unrestake_handler(ctx: Context, lamports_in: u64) -> Result<()> {
 require!(lamports_in > 0, LRTPoolError::InvalidAmount);

 //TODO: Warning! probably incorrect way to get amount of SOL that will be unstaked
 ctx.accounts.lst_ata.reload()?;
 let lp_solayer_amount_before = ctx.accounts.lst_ata.amount;

 unrestake(ctx.accounts.solayer_unrestake(), lamports_in)?;

 ctx.accounts.lst_ata.reload()?;

 let lp_solayer_amount_after = ctx.accounts.lst_ata.amount;
 let mint_lp_sol_amount = lp_solayer_amount_after
 .checked_sub(lp_solayer_amount_before)
 .ok_or(LRTPoolError::NumericUnderflow)?;

 // burn the LP ssol token
 burn_lp_ssol_token(&ctx, lamports_in)?;

 //mint the LP sol token
 mint_lp_sol_token(&ctx, mint_lp_sol_amount)?;

solayer::cpi::

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Proof of Concept
Invoke the solayer_unrestake instruction and make sure the staker will receive staking rewards or set
the stake withdraw fee.

// constant_share_exchange_rate
// Initialize the stake pool and set the withdrawal fee

initialize(
 & id(),
 &stake_pool_address,
 &pool_authority, // manager
 &independent_staker.pubkey(), // staker
 &withdraw_authority, // stake pool withdraw authority
 &validator_list_address, // validator list
 &reserve_stake_address, // reserve_stake
 &pool_mint_address, // pool_mint
 &pool_mint_fee_address, // manager_pool_account,
 & ID, // token_program_id,
 None, // deposit_authority
 Fee {
 denominator: 10000,
 numerator: 5,
 }, // fee
 Fee {
 denominator: 10000,
 numerator: 2,
 }, // withdrawal_fee
 Fee {
 denominator: 10000,
 numerator: 0,
 }, // deposit_fee
 0, // referral_fee
 8, // max_validators
),
// ...
// restake with solayer
lrt_pool
 .admin_solayer_restake(
 &ctx,
 &authority,
 &mut test_multisig,
 &StakePoolAccounts {
 pool: stake_pool.pool,
 withdrawal_authority: stake_pool.withdrawal_authority(),
 mint: stake_pool.pool_mint,
 reserve_account: stake_pool.reserve_stake,
 manager_fee_account: stake_pool.pool_mint_fee_address,
 program: ID,
 },
 &SolayerAccounts {
 pool: test_solayer.pool,
 program: ID,
 lst_mint: test_solayer.lst_mint,
 rst_mint: test_solayer.rst_mint,
 vault: test_solayer.lst_vault,
 },
 20 * LAMPORTS_PER_SOL,
)
 .await?;

// unrestake and pay withdrawal fees, that should change the share exchange rate
lrt_pool
 .admin_solayer_unrestake(
 &ctx,
 &authority,
 &mut test_multisig,
 &SolayerAccounts {
 pool: test_solayer.pool,
 program: ID,
 lst_mint: test_solayer.lst_mint,
 rst_mint: test_solayer.rst_mint,
 vault: test_solayer.lst_vault,

spl_stake_pool::instruction::
spl_stake_pool::

spl_token::

spl_stake_pool::

solayer::

solayer::

 },
 20 * LAMPORTS_PER_SOL,
)
 .await?;

let pool_oracle_1 =
 get_anchor_account::<PoolOracle>(&ctx.rpc(), &lrt_pool.pool.oracle_v2()).await?;

// share to asset exchange rate should change so check that it is not 1.0 anymore
let share_oracle_price = pool_oracle_1
 .share_to_asset_exchange_rate()
 .unwrap()
 .as_u64(-8);
assert_ne!(
 share_oracle_price, 100_000_000,
 "share to asset exchange rate should have changed but it is still 1.0"
);

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:C (2.5)

Recommendation
To address this issue, it is recommended to add also the spl-stake-pool::withdraw_stake instruction
and mint the lp_asset tokens based on the withdrawn amount. This will ensure that the staking
rewards and withdrawal fees will be taken into account. Also, it is necessary to call the
PoolOracle::update method at the end of the solayer_unrestake instruction to correctly update
the share exchange rate.

Remediation Comment

SOLVED: The Glow team resolved this finding by adding the spl-stake-pool::withdraw_sol
instruction, minting the lp_asset tokens based on the withdrawn amount and finally updating the pool
oracle. This will ensure that the staking rewards and withdrawal fees will be taken into account and the
exchange rates will be adapted accordingly. Please note that the spl-stake-pool::withdraw_sol may
fail due to insufficient stake pool SOL reserve.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2530/commits/a9d746a3d01e3f1d1f5dcf07c91138e
3a0772d2f

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:C
https://github.com/Blueprint-Finance/glow-v1/pull/2530/commits/a9d746a3d01e3f1d1f5dcf07c91138e3a0772d2f
https://github.com/Blueprint-Finance/glow-v1/pull/2530/commits/a9d746a3d01e3f1d1f5dcf07c91138e3a0772d2f

7.1 4 AC C O U N TS A R E N OT R E LOA D E D B E FO R E O R AC L E

U P DAT E

// LOW

Description

The PoolOracle::update method is intended to update the stake exchange rate and recalculate the
share exchange rate based on the current supplies of the lp_asset , lp_share , and lp_stake mints.

However, the mint accounts passed to this method are not reloaded after any minting or burning
operations, meaning they may contain stale supply values. As a result, the method operates on outdated
data and fails to update the exchange rates, rendering it ineffective.

This issue becomes especially problematic when the ratio between total assets and minted shares
changes — for example, after invoking the unrestake instruction. In such cases, not updating the
exchange rate leads to:

Incorrect share conversions during deposits, withdrawals, or internal accounting.
Incorrect minting or burning of tokens, misrepresenting user or protocol balances.

The impact on protocol integrity is critical:

Inaccurate share conversions affect every interaction involving deposits and withdrawals.
These errors can accumulate over time, distorting the value distribution across users.
It creates a vector for exchange rate exploits, where attackers could manipulate timing or inputs to

gain more tokens than they are entitled to.

This issue is currently rated as LOW severity because the share exchange rate is always fixed at 1.0,
and the solayer_unrestake instruction does not call the update method that would recalculate it.

However, if solayer_unrestake is corrected in the future to update the exchange rate properly, there is
a high risk that this bug will be introduced, as it has already been implemented incorrectly in other parts
of the codebase.

// Mint LP tokens
crate mint_tokens(
 ctx.accounts.lp_token_program.to_account_info(),
 ctx.accounts.lp_share_mint.to_account_info(),
 ctx.accounts.lp_share_token_account.to_account_info(),
 ctx.accounts.pool.to_account_info(),
 Some(pool_seeds),
 shares,
)?;
crate mint_tokens(
 ctx.accounts.lp_token_program.to_account_info(),
 ctx.accounts.lp_asset_mint.to_account_info(),
 ctx.accounts.lp_asset_token_account.to_account_info(),
 ctx.accounts.pool.to_account_info(),
 Some(pool_seeds),
 assets,
)?;

::utils::cpi::

::utils::cpi::

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

Proof of Concept
1. Emulate the staking rewards by multiplying the unrestaked assets by factor 1.5.
2. Unrestake 20 sSOL to get 30 SOL.
3. Call the update method that should update the share exchange rate.

Assets should be 40 and stake 0, however the mint accounts were not reloaded and the values stay the
same as before minting and burning and thus the share exchange rate is not correctly updated.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
To address this issue, it is recommended to reload the lp_asset , lp_share , and lp_stake mints
before calling the update method.

Remediation Comment

// mint deposit collateral tokens to margin account
ctx.accounts.mint_deposit_collateral_tokens(shares)?;

ctx.accounts.pool_oracle.update(
 &clock,
 &ctx.accounts.lp_asset_mint,
 &ctx.accounts.lp_share_mint,
 &ctx.accounts.lp_stake_mint,
 None,
)?;

242
243
244
245
246
247
248
249
250
251

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

SOLVED: The Glow team resolved this issue by reloading the accounts at the beginning of the
PoolOracle::update method and thus making sure the accounts do not contain stale data.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c2b410e276e7cfa6c37dd93a16a998
459f7d68ea

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c2b410e276e7cfa6c37dd93a16a998459f7d68ea
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/c2b410e276e7cfa6c37dd93a16a998459f7d68ea

7.1 5 R I S K O F I N C O R R EC T E A R L I EST WI T H D R AWA L

T I M ESTA M P CA LC U L AT I O N

// LOW

Description
The update_earliest_withdrawal_timestamp method updates the
earliest_withdrawal_timestamp field in the PendingWithdrawals account. However, the method
only considers the earliest withdrawal_request_timestamp among all active requests and does not
account for any changes to the withdrawal_waiting_period that may have occurred after the
requests were queued.

As a result, the computed earliest_withdrawal_timestamp may become inaccurate, especially if the
waiting period has been shortened or extended since earlier requests were submitted.

This can lead to unexpected behavior or inconsistencies in user experience.

programs/lrt/src/state/pending_withdrawals.rs

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
To address this issue, it is recommended to calculate the earliest_withdrawal_timestamp by
evaluating each individual withdrawal request and computing the sum of its
withdrawal_request_timestamp and its corresponding withdrawal_waiting_period . The final value
should be the minimum of these computed timestamps.

This ensures that any changes to the waiting period are correctly reflected in the withdrawal timing and
that the system remains accurate and fair for all users.

Remediation Comment

pub fn update_earliest_withdrawal_timestamp(&mut self) {
 self.earliest_withdrawal_timestamp = self
 .withdrawals
 .iter()
 .filter_map(|w| {
 if w.pending_assets > 0 || w.pending_shares > 0 {
 Some(w.withdrawal_request_timestamp)
 } else {
 None
 }
 })
 .min()
 .unwrap_or_default();
}

115
116
117
118
119
120
121
122
123
124
125
126
127
128

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

SOLVED: The Glow team resolved this issue by correcting the earliest withdrawal timestamp calculation
and taking into account also the withdrawal_waiting_period .

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/d19defef62a66972a17f55f7b4a7368
980287a78

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/d19defef62a66972a17f55f7b4a7368980287a78
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/d19defef62a66972a17f55f7b4a7368980287a78

7.1 6 R I S K O F LO S I N G C O N T RO L OV E R T H E P O O L A F T E R

AU T H O R I T Y T R A N S F E R

// LOW

Description
The update_pool_accounts instruction allows the pool administrator to update various pool-related
accounts, including the authority (administrator) account itself. However, the instruction does not require
a signature from the new authority. This poses a significant risk: the authority could be transferred to an
account that either doesn't possess the corresponding private key or belongs to an unintended external
party.

As a result, this could lead to permanent loss of administrative access to the pool or unauthorized
control, compromising the protocol's integrity and operability.

programs/lrt/src/instructions/admin/configure_pool.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:C/Y:N (2.5)

Recommendation
To address this issue, it is recommended to require the signature of both the old and the new pool
authority either in one instruction or in a two-step authority transfer process.

Remediation Comment

SOLVED: The Glow team resolved this issue by adding a two-step authority transfer mechanism to
change the pool's authority, treasury and fee vault.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/commit/71ff5654562262592526d387566f39620a082ec
3

pub fn update_pool_accounts_handler(
 ctx: Context,
 accounts: ConfigurePoolAccounts,
) -> Result<()> {
 let mut pool_data = ctx.accounts.pool.load_mut()?;
 if let Some(pool_authority) = accounts.pool_authority {
 require!(
 pool_authority != Pubkey::default(),
 LRTPoolError::AccountShoudNotBeEmpty
);
 require!(
 pool_authority != pool_data.pool_authority,
 LRTPoolError::AccountShouldNotBeTheSame
);
 pool_data.pool_authority = pool_authority;
 }

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:C/Y:N
https://github.com/Blueprint-Finance/glow-v1/commit/71ff5654562262592526d387566f39620a082ec3
https://github.com/Blueprint-Finance/glow-v1/commit/71ff5654562262592526d387566f39620a082ec3

7.1 7 R I S K O F LO C K I N G F U N D S D U E TO U N C H EC K E D M I N T

AC C O U N T D U R I N G M A RG I N WI T H D R AWA L

// LOW

Description
The margin_execute_withdraw instruction allows users to finalize their withdrawal requests and
retrieve their funds after the required waiting period has passed. It works by burning the withdrawal
tokens and transferring the corresponding amount of assets to the user.

However, the instruction does not correctly validate that the supplied withdrawal_mint account is
accurate. As a result, users might mistakenly provide the deposit_mint (or any other token with the
lrt_margin_authority authority) account instead. In such cases, the instruction would still succeed,
but it would burn deposit tokens instead of the intended withdrawal tokens.

This misbehavior can lead to a loss of funds, as the withdrawal request account is closed during the
process—rendering the actual withdrawal tokens unusable—while also incorrectly burning deposit
tokens that represent a user's stake.

programs/lrt/src/instructions/margin/margin_execute_withdraw.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:C/Y:N (2.4)

Recommendation
To address this issue, it is recommended to verify, that the withdrawal_mint account has the expected
address.

Remediation Comment

SOLVED: The Glow team resolved this issue by verifying that the withdrawal_mint account has the
expected address.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a6b2d8d9b721c486b8c750812cd5c1
09b5502dca

#[account(
 mut,
 mint::authority = lrt_margin_authority
)]
pub withdrawal_mint: Box>,

102
103
104
105
106

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:C/Y:N
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a6b2d8d9b721c486b8c750812cd5c109b5502dca
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/a6b2d8d9b721c486b8c750812cd5c109b5502dca

7.1 8 I N S U F F I C I E N T M I N TS VA L I DAT I O N D U R I N G

I N I T I A L I Z AT I O N

// LOW

Description
The initialize instruction is responsible for setting up the program, including defining the asset,
stake, and share mints. For the protocol to function correctly, all of these mints are expected to use the
same number of decimals. However, this requirement is not currently enforced. If different decimals are
set, it can lead to incorrect token distribution and compromise the economic stability of the protocol.

Additionally, the initialize instruction currently restricts the asset mint to be the native SOL token
mint, which is owned by the legacy SPL Token program (Token v1). This program does not support token
extensions. Since the stake and share mints are also required to be owned by the same legacy token
program, there is no need to validate them for potentially dangerous extensions.

However, if this requirement changes in the future—for example, if the stake or share mints are allowed
to be managed by the Token2022 program—it would be critical to ensure that those mints do not include
any unsafe or unintended token extensions.

programs/lrt/src/instructions/admin/initialize.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:C/Y:N (2.4)

Recommendation
To address this issue, it is recommended to enforce the same number of decimals of all asset, stake and
share mints during the program initialization.

Remediation Comment

// The external asset mint (SOL) deposited to obtain the share mint (glowSOL)
#[account(
 constraint = asset_mint.key() == NATIVE_MINT_ID,
)]
asset_mint: UncheckedAccount<'info>,

// glowSOL minted by the pool
#[account(
 mint::authority = pool,
 mint::freeze_authority = pool,
 mint::token_program = token_program,
 constraint = share_mint.supply == 0 @ LRTPoolError::NonZeroShareMintSupply
)]
share_mint: Box>,

// The external stake mint (e.g. sSOL) deposited to obtain the share mint (glowSOL)
stake_mint: UncheckedAccount<'info>,

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:N/D:C/Y:N

SOLVED: The Glow team resolved this finding by enforcing the same number of decimals for all asset,
stake, and share mints during the program initialization.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/3c9830e5252785543c39ff7c8b1b0d
cb33dfcfe7

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/3c9830e5252785543c39ff7c8b1b0dcb33dfcfe7
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/3c9830e5252785543c39ff7c8b1b0dcb33dfcfe7

7.1 9 I N S U F F I C I E N T I N ST RU C T I O N PA R A M E T E RS VA L I DAT I O N

// LOW

Description
The configure_pool instruction allows an authorized account to set various parameters for the pool,
including fee configurations. However, the instruction does not properly validate the fee values, allowing
the administrator to mistakenly set fees greater than 1.0 (i.e., over 100%).

This oversight could lead to unexpectedly high user charges or even a denial of service, as transactions
may fail due to insufficient user balances when excessive fees are applied.

programs/lrt/src/instructions/admin/configure_pool.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:N (2.3)

if let Some(instant_withdrawal_fee) = config.instant_withdrawal_fee {
 require!(
 instant_withdrawal_fee.numerator != pool_data.instant_withdrawal_fee_num
 && instant_withdrawal_fee.denominator != pool_data.instant_withdrawal_fee_denom,
 LRTPoolError::FeeUnchanged
);

 require!(
 instant_withdrawal_fee.denominator > 0,
 LRTPoolError::ZeroDenominator
);
 // Instant_withdrawal_fee_num could be zero, which is valid. it is fine to 0 fees for boot
 // we are not dividing by instant_withdrawal_fee_num so it is fine
 pool_data.instant_withdrawal_fee_num = instant_withdrawal_fee.numerator;

 if instant_withdrawal_fee.denominator == 0 {
 return err!(LRTPoolError::ZeroDenominator);
 }
 pool_data.instant_withdrawal_fee_denom = instant_withdrawal_fee.denominator;
}

if let Some(cancel_pending_withdrawal_fee) = config.cancel_pending_withdrawal_fee {
 require!(
 cancel_pending_withdrawal_fee.numerator != pool_data.cancel_pending_withdrawal_fee_num
 && cancel_pending_withdrawal_fee.denominator
 != pool_data.cancel_pending_withdrawal_fee_denom,
 LRTPoolError::FeeUnchanged
);

 require!(
 cancel_pending_withdrawal_fee.denominator > 0,
 LRTPoolError::ZeroDenominator
);
 // Instant_withdrawal_fee_num could be zero, which is valid. it is fine to 0 fees for boot
 // we are not dividing by instant_withdrawal_fee_num so it is fine
 pool_data.cancel_pending_withdrawal_fee_num = cancel_pending_withdrawal_fee.numerator;

 if cancel_pending_withdrawal_fee.denominator == 0 {
 return err!(LRTPoolError::ZeroDenominator);
 }
 pool_data.cancel_pending_withdrawal_fee_denom = cancel_pending_withdrawal_fee.denominator;
}

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:N

Recommendation
To address this issue, it is recommended to validate the fee numerator and denominator and ensure that
the resulting fee factor will be equal or less than 1.0.

Remediation Comment

SOLVED: The Glow team resolved this finding by validating the fee numerator and denominator and
ensuring that the resulting fee factor will be equal to or less than 1.0.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/2cd4cc3ce816fea86b023a4929afe94
e3bf6ceac

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/2cd4cc3ce816fea86b023a4929afe94e3bf6ceac
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/2cd4cc3ce816fea86b023a4929afe94e3bf6ceac

7. 2 0 I N C O R R EC T P O S I T I O N C H A N G E R E T U R N E D TO T H E

P RO G R A M A DA P T E R

// LOW

Description
The margin_cancel_withdraw instruction allows users to cancel a pending withdrawal request.
However, it incorrectly updates the asset_mint instead of the deposit_mint (and the corresponding
shares_after_fees amount) when calling the write_adapter_result method.

When margin_cancel_withdraw is invoked through adapter_invoke , this issue has no functional
impact because margin position balances are updated independently of the write_adapter_result
output. However, when the instruction is invoked via liquidator_invoke , the returned values are used
to calculate liquidator fees. In this case, the incorrect mint being updated can lead to inaccurate fee
calculations based on the change in token balances.

The severity of this issue is considered low, as it only applies when the instruction is invoked by a
liquidator and the typical difference between assets and shares is relatively small. Since the liquidation
fee is 5% of the token delta, the overall impact remains limited under most scenarios.

programs/lrt/src/instructions/margin/margin_cancel_pending_withdrawal.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (2.0)

Recommendation

write_adapter_result(
 &*ctx.accounts.margin_account.load()?,
 &AdapterResult {
 position_changes: vec![
 (
 ctx.accounts.withdrawal_mint.key(),
 vec![PositionChange::TokenChange(TokenBalanceChange {
 mint: ctx.accounts.withdrawal_mint.key(),
 tokens: assets,
 change_cause: TokenBalanceChangeCause::ExternalDecrease,
 })],
),
 (
 ctx.accounts.asset_mint.key(),
 vec![PositionChange::TokenChange(TokenBalanceChange {
 mint: ctx.accounts.asset_mint.key(),
 tokens: assets,
 change_cause: TokenBalanceChangeCause::ExternalIncrease,
 })],
),
],
 },
)?;

glow_margin::290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N

To address this issue, it is recommended to update the deposit_mint (and the corresponding token
amount of shares_after_fees) via the write_adapter_result method.

Remediation Comment

SOLVED: The Glow team resolved this issue by updating the correct deposit_mint (and the
corresponding token amount of shares_after_fees) via the write_adapter_result method.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/ab87856732a73c45fa673bc76406f3
400974bbd5

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/ab87856732a73c45fa673bc76406f3400974bbd5
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/ab87856732a73c45fa673bc76406f3400974bbd5

7. 2 1 I N S U F F I C I E N T AC C O U N TS VA L I DAT I O N D U R I N G O R AC L E

M I G R AT I O N

// LOW

Description
The instruction migrate_oracle allows an oracle administrator to migrate the oracle account to a new
version. However, the instruction lacks full validation of the deprecated_oracle and
treasury_stake_account accounts, introducing the following risks:

1. Unverified deprecated_oracle PDA:
The instruction does not verify that the provided deprecated_oracle account corresponds to the
correct pool. If multiple pools exist, this could lead to migrating an unrelated or incorrect oracle
account, potentially compromising the integrity of other pools.
2. Unvalidated treasury_stake_account Mint:
The mint of the treasury_stake_account is not checked, allowing an arbitrary token account
controlled by the authority to be used. This could result in minting an incorrect amount of lp_stake
tokens, leading to inconsistencies in the protocol's accounting and economic model.

programs/lrt/src/instructions/migrations/migrate_oracle.rs

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N (2.0)

Recommendation
To address this finding, it is recommended to make sure that the deprecate_oracle and the
treasury_stake_account correspond to the correct account associated with the expected pool and
stake mint.

Remediation Comment

SOLVED: The Glow team resolved this finding by making sure that the deprecate_oracle and the
treasury_stake_account correspond to the correct accounts.

#[account(
 mut,
 close = oracle_admin,
 constraint = deprecated_oracle.admin == oracle_admin.key(),
)]
pub deprecated_oracle: Box>,

50
51
52
53
54
55

#[account(
 token::authority = pool_treasury,
 token::token_program = token_program,
)]
pub treasury_stake_account: Box>,

76
77
78
79
80

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/9c3f78e3a4e0ae2a81efbe6d765d2bb
9cc66e477

7. 2 2 C E N T R A L I Z AT I O N A N D M A N UA L I N T E RV E N T I O N R I S K

// INFORMATIONAL

Description

The protocol depends on regular manual actions by an administrative authority to maintain proper
functionality. These actions include:

Withdrawing treasury funds from the protocol,
Restaking and unstaking assets to ensure stake rewards continue to accrue, and
Managing liquidity to guarantee that users can withdraw when needed.

All of these operations can only be performed by a designated (presumably multi-signature) authority.

This reliance on manual intervention introduces a degree of centralization, as the protocol's operation is
dependent on the responsiveness and coordination of the admin group. Additionally, human error or
delays in performing these actions can lead to service degradation, reward inefficiencies, or liquidity
shortages, impacting user trust and protocol stability.

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:L/I:L/D:L/Y:N (1.9)

Recommendation
To address this issue, it is recommended to clearly document the program's workflow in publicly
accessible documentation and to automate critical operational steps to ensure the protocol functions
reliably and consistently.

Remediation Comment

ACKNOWLEDGED: The Glow team acknowledged this finding and stated that public-facing documentation
for the protocol will be published once it is ready.

https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/9c3f78e3a4e0ae2a81efbe6d765d2bb9cc66e477
https://github.com/Blueprint-Finance/glow-v1/pull/2410/commits/9c3f78e3a4e0ae2a81efbe6d765d2bb9cc66e477
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:L/I:L/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:L/I:L/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:L/I:L/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:L/I:L/D:L/Y:N

7. 2 3 U N U S E D C O D E

// INFORMATIONAL

Description
The structs PendingWithdrawals , PoolOracle , LRTOracle , LRTPool , LrtMarginAuthority ,
TransferOracleAdminAccount , WithdrawRequest and TokenType derive the InitSpace macro.
However the Space trait members that are implemented by this macro are never used or are used only in
the deprecated instructions that will be removed.

programs/lrt/src/state/pending_withdrawals.rs

The LrtPoolV2::allowed_delegates field is not used.

programs/lrt/src/state.rs

The instruction initialize_pool_mints expects the token_program account. However this account
is not used and is not necessary.

programs/lrt/src/instructions/admin/initialize_pool_mints.rs

The instruction configure_pool expects the token_program and system_program accounts.
However these accounts are not used and are not necessary.

programs/lrt/src/instructions/admin/configure_pool.rs

The instruction configure_pool checks the cancel_pending_withdrawal_fee.denominator twice
where the second check is redundant and dead code.

#[account]
#[derive(InitSpace, Debug, Default)]
pub struct PendingWithdrawals {
 pub owner: Pubkey,
 pub pool: Pubkey,
 /// The number of SOL the user is entitled to
 pub total_pending_assets: u64,
 pub total_pending_shares: u64,
 pub earliest_withdrawal_timestamp: i64,
 pub withdrawals: [PendingWithdrawal; 8],
}

22
23
24
25
26
27
28
29
30
31
32

/// Allowed delegates
pub allowed_delegates: [PoolDelegate; 6],

117
118

token_program: Interface<'info, TokenInterface>,114

token_program: Interface<'info, TokenInterface>,
system_program: Program<'info, System>,

35
36

programs/lrt/src/instructions/admin/configure_pool.rs

The instruction margin_init_withdraw expects the asset_mint and lp_asset_mint accounts.
However these accounts are not used and are not necessary.

programs/lrt/src/instructions/margin/margin_init_withdraw.rs

The instruction margin_cancel_withdrawal expects the lp_asset_token_account ,
lp_share_token_account , user_asset_token_account and pool_asset_vault accounts. However
these accounts are not used and are not necessary.

programs/lrt/src/instructions/margin/margin_cancel_pending_withdrawal.rs

require!(
 cancel_pending_withdrawal_fee.denominator > 0,
 LRTPoolError::ZeroDenominator
);
// Instant_withdrawal_fee_num could be zero, which is valid. it is fine to 0 fees for bootstra
// we are not dividing by instant_withdrawal_fee_num so it is fine
pool_data.cancel_pending_withdrawal_fee_num = cancel_pending_withdrawal_fee.numerator;

if cancel_pending_withdrawal_fee.denominator == 0 {
 return err!(LRTPoolError::ZeroDenominator);
}

111
112
113
114
115
116
117
118
119
120
121

pub asset_mint: Box<InterfaceAccount<'info, Mint>>,

#[account(
 seeds = [
 pool.key().as_ref(),
 LP_ASSET_MINT_SEED,
],
 bump,
 token_program = lp_token_program,
 authority = pool,
)]
pub lp_asset_mint: Box<InterfaceAccount<'info, Mint>>

mint::
mint::

59
60
61
62
63
64
65
66
67
68
69
70

#[account(
 mut,
 seeds = [
 pool.key().as_ref(),
 LP_ASSET_VAULT_SEED,
],
 bump,
)]
pub lp_asset_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

#[account(
 mut,
 seeds = [
 pool.key().as_ref(),
 LP_SHARE_VAULT_SEED,
],
 bump,
)]
pub lp_share_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

#[account(
 mut,
 token::mint = asset_mint,
 token::authority = margin_account
)]
pub user_asset_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

149
150
151
152
153
154
155
156

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:L/Y:N (1.3)

Recommendation
To address this issue, it is recommended to remove the unused or dead code.

Remediation Comment

SOLVED: The Glow team resolved this finding by removing the unused code.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/commit/fdc9720e05c5467c08a6784015d40c24a5adbba
9

#[account(
 mut,
 associated_token::authority = pool,
 associated_token::mint = asset_mint,
 associated_token::token_program = token_program
)]
pub pool_asset_vault: Box<InterfaceAccount<'info, TokenAccount>>,

156
157
158
159
160
161
162

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:L/Y:N
https://github.com/Blueprint-Finance/glow-v1/commit/fdc9720e05c5467c08a6784015d40c24a5adbba9
https://github.com/Blueprint-Finance/glow-v1/commit/fdc9720e05c5467c08a6784015d40c24a5adbba9

7. 2 4 I N S EC U R E A N D I N C O N S I ST E N T I N T E R AC T I O N WI T H T H E

S O L AY E R P ROTO C O L

// INFORMATIONAL

Description
The program integrates with the Solayer protocol through the solayer_restake and
solayer_unrestake instructions. However, the current implementation exhibits several flaws that pose
risks to protocol correctness and maintainability:

1. Lack of Slippage Protection: The solayer_restake instruction does not include slippage
constraints. Without these, the authority may receive fewer tokens than expected during restaking.
2. Account Duplication and Ambiguity: The instruction unnecessarily duplicates several accounts (e.g.,
stake_pool_token_account vs lst_ata , and lst_mint vs stake_pool_mint). This increases the
chance of passing incorrect values and increases the transaction cost unnecessarily.
3. Inadequate Enforcement of Stake Pool Validity: The code fails to properly enforce that the correct
stake_pool_mint is used (specifically sSOL) and that it corresponds to the intended stake pool. This
opens the door to potentially interacting with arbitrary or malicious stake pools.
4. Referrer Account Misuse: The referrer_fee_info account is not validated and may be any
arbitrary account. This could result in unintended and unexpected token transfers.
5. Redundant Deserialization: The use of the amount accessor on the lst_ata token account is
redundant, as the account is already fully deserialized. This creates unnecessary overhead and
potential confusion in the code logic.
6. Unsafe Reliance on External Program Validations: Several unchecked accounts rely solely on
internal checks performed by the Solayer program. Since the Solayer program is external and cannot be
audited or verified within the current scope, this reliance poses a serious trust and security
assumption.
7. Incorrect Unit Handling: In the unrestake_handler , the lamports_in parameter is misleadingly
named. Although the name suggests it represents an amount in lamports, it actually refers to a value
in stake tokens. This inconsistency can cause confusion for developers and may lead to incorrect
calculations during staking or withdrawal operations.

programs/lrt/src/instructions/admin_staking/solayer_restake.rs

// CHECK: SPL stake pool ID
#[account(mut)]
pub stake_pool: AccountInfo<'info>,

// CHECK: SPL stake pool withdraw authority ID
#[account(mut)]
pub stake_pool_withdraw_authority: AccountInfo<'info>,

// CHECK: SPL stake pool reserve stake ID
#[account(mut)]
pub stake_reserve_account: AccountInfo<'info>,

// CHECK: SPL stake pool token account (LP-SOLAYER destination)
#[account(mut)]
pub stake_pool_token_account: Box>,

// CHECK: SPL stake pool mint address

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

BVSS

AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:H/D:H/Y:H (1.1)

Recommendation
To address this finding, it is recommended to correct all of the points listed above:
1. Introduce slippage bounds for all restaking/unrestaking paths
2. Remove redundant accounts and clearly define expected inputs
3. Enforce proper validation for stake pool and mint accounts
4. Ensure referrer_fee_info is strictly validated to match protocol expectations
5. Simplify account usage and eliminate redundant deserialization
6. Avoid unchecked trust in external programs — validate critical account fields locally
7. Rename and handle parameters to match their actual units and usage

Remediation Comment

PARTIALLY SOLVED: The Glow team has addressed all recommendations except the introduction of
slippage bounds for restaking and unrestaking paths. They stated that they do not plan to implement
this logic. These instructions are controlled by a trusted authority, and any potential slippage losses are
the responsibility of that authority.

Remediation Hash
https://github.com/Blueprint-Finance/glow-v1/commit/f2a7e154e944f6aa63bdc5362875371ae157d35f

#[account(mut)]
pub stake_pool_mint: AccountInfo<'info>,

// CHECK: SPL stake pool manager fee account address
#[account(mut)]
pub stake_manager_fee_account: Box>,

// CHECK: not used, dummy address for CPI
#[account(mut)]
pub stake_referrer_fee_account: AccountInfo<'info>,

108
109
110
111
112
113
114
115
116

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:H/D:H/Y:H
https://github.com/Blueprint-Finance/glow-v1/commit/f2a7e154e944f6aa63bdc5362875371ae157d35f

7. 2 5 D O S R I S K A F T E R A I R D O P P I N G TO D E T E R M I N I ST I C

P DAS

// INFORMATIONAL

Description
The program manually creates several deterministic Program Derived Addresses (PDAs), including LP
token accounts, their associated mints, and the LRT authority account. Because these addresses are
derived predictably, they can be known in advance after pool creation.

However, the account initialization logic does not handle the edge case where one of these PDA accounts
already contains a small amount of lamports. In such cases, an attacker could deliberately airdrop a
minimal amount of lamports to the target PDAs before the program attempts to initialize them. This
would cause the account creation to fail, since the program assumes these accounts are uninitialized,
and result in failed instructions.

Consequences:

The program would be unable to correctly initialize critical accounts such as pool mints.
Instructions like transfer_to_treasury may also fail permanently.
This attack could effectively block the pool setup or critical operations, leading to denial of service.

// Create the margin LRT authority
{
 let a = ctx.accounts.airspace.key();
 let b = ctx.accounts.pool.key();
 let signer_seeds: &[&[u8]] = &[
 LRT_MARGIN_AUTHORITY_SEED,
 a.as_ref(),
 b.as_ref(),
 &[ctx.bumps.lrt_margin_authority],
];
 let signer_seeds = &[signer_seeds];
 let init_ctx = CpiContext::new(
 ctx.accounts.system_program.to_account_info(),
 CreateAccount {
 from: ctx.accounts.signer.to_account_info(),
 to: ctx.accounts.lrt_margin_authority.to_account_info(),
 },
)
 .with_signer(signer_seeds);
 let space = 8 + ();
 let lamports = Rent::get()?.minimum_balance(space);
 create_account(init_ctx, lamports, space as _, &crate::ID)?;
}

std::mem::size_of::

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

pub fn create_token_account<'info>(
 signer: AccountInfo<'info>,
 account: AccountInfo<'info>,
 mint: AccountInfo<'info>,
 authority: AccountInfo<'info>,
 token_program: AccountInfo<'info>,
 system_program: AccountInfo<'info>,
 seeds: &[&[&[u8]]],
) -> Result<()> {
 assert_eq!(mint.owner, token_program.key);

36
37
38
39
40
41
42
43
44
45
46
47

BVSS

AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N (0.5)

 let ctx = CpiContext::new(
 system_program.to_account_info(),
 CreateAccount {
 from: signer.to_account_info(),
 to: account.to_account_info(),
 },
)
 .with_signer(seeds);
 let space = match *mint.owner {
 ID => TokenAccount::LEN,
 ID => {
 let mint_data = mint.try_borrow_data()?;
 let mint_state = StateWithExtensions::::unpack(&mint_data)?;
 let mint_extensions = mint_state.get_extension_types()?;
 let required_extensions =
 ExtensionType::get_required_init_account_extensions(&mint_extensions);
 ExtensionType::try_calculate_account_len::<
 Account,
 >(&required_extensions)?
 }
 _ => panic!(),
 };
 let lamports = Rent::get()?.minimum_balance(space);
 create_account(ctx, lamports, space as _, mint.owner)?;

 let accounts = InitializeAccount3 {
 account,
 mint,
 authority,
 };
 let ctx = CpiContext::new(token_program, accounts);
 initialize_account3(ctx)
}

anchor_spl::token:: anchor_spl::token::
anchor_spl::token_2022::

anchor_spl::token_2022::spl_token_2022::state::

anchor_spl::token_interface::

anchor_spl::token_interface::

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

pub fn create_mint_with_freeze_authority<'info>(
 signer: AccountInfo<'info>,
 mint: AccountInfo<'info>,
 authority: AccountInfo<'info>,
 token_program: AccountInfo<'info>,
 system_program: AccountInfo<'info>,
 seeds: &[&[&[u8]]],
 decimals: u8,
) -> Result<()> {
 let ctx = CpiContext::new(
 system_program.to_account_info(),
 CreateAccount {
 from: signer.to_account_info(),
 to: mint.to_account_info(),
 },
)
 .with_signer(seeds);
 let space = match *token_program.key {
 ID => Mint::LEN,
 ID => Mint::LEN
 _ => panic!(),
 };
 let lamports = Rent::get()?.minimum_balance(space);
 create_account(ctx, lamports, space as _, token_program.key)?;

 let accounts = InitializeMint2 { mint };
 let ctx = CpiContext::new(token_program, accounts);
 initialize_mint2(ctx, decimals, authority.key, Some(authority
}

anchor_spl::token:: anchor_spl::token::
anchor_spl::token_2022:: anchor_spl::token_2022::spl_token_2022::state::

anchor_spl::token_interface::

anchor_spl::token_interface::

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N

Recommendation
To address this issue, it is recommended to check whether the account being created already holds any
lamports. If it does, the program should:
1. Transfer the remaining lamports to the account to meet the minimum rent-exempt threshold.
2. Reallocate the account to the expected data size.
3. Assign the correct owner (i.e., the program) to the account.

Remediation Comment

FUTURE RELEASE: The Glow team acknowledged the finding and plans to fix it in a later deployment.

8 . AU TO M AT E D T EST I N G

S t a t i c A n a l y s i s R e p o r t

D e s c r i p t i o n

Halborn used automated security scanners to assist with detection of well-known security issues and
vulnerabilities. Among the tools used was cargo audit , a security scanner for vulnerabilities reported
to the RustSec Advisory Database. All vulnerabilities published in https://crates.io are stored in a
repository named The RustSec Advisory Database. cargo audit is a human-readable version of the
advisory database which performs a scanning on Cargo.lock. Security Detections are only in scope. All
vulnerabilities shown here were already disclosed in the above report. However, to better assist the
developers maintaining this code, the auditors are including the output with the dependencies tree, and
this is included in the cargo audit output to better know the dependencies affected by unmaintained and
vulnerable crates.

C a r g o A u d i t R e s u l t s

ID CRATE DESCRIPTION

RUSTSEC-2025-
0024

crossbeam-
channel crossbeam-channel: double free on Drop

RUSTSEC-2024-
0344 curve25519-dalek Timing variability in curve25519-

dalek 's Scalar29::sub / Scalar52::sub

RUSTSEC-2022-
0093 ed25519-dalek Double Public Key Signing Function Oracle Attack on ed25519-dalek

RUSTSEC-2025-
0022 openssl Use-After-Free in Md::fetch and Cipher::fetch

RUSTSEC-2025-
0009 ring Some AES functions may panic when overflow checking is enabled.

RUSTSEC-2025-
0009 ring Some AES functions may panic when overflow checking is enabled.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

