
Draf
t

​

Security Assessment

Glow V1​

November 2024

Prepared for Blueprint-Finance

 ​ ​ ​ ​ ​ ​ ​

Table of content
Project Summary...3

Project Scope.. 3
Project Overview... 3

Protocol Overview... 5
Findings Summary.. 6
Severity Matrix...6

Detailed Findings.. 7
High Severity Issues..9
H-01 Anybody can create an issuer, since there’s no access control to
airspace_permit_issuer_create_handler()...9
H-02 Bad debt isn’t socialized, causing issues for lenders..11
H-03 Liquidator can steal funds from the user without repaying anything..12
Medium Severity Issues.. 14
M-01 Attacker can send lamports to metadata accounts, causing an underflow during account expansion 14
M-02 Under-estimation of reallocation size would revert the tx in metadata.set_entry()...............................16
M-03 Borrow doesn’t write adapter results, allowing liquidator to fake repayment...................................... 18
M-04 Liquidation filters out borrow and token decrease from changes calculation, allowing user to fake
liquidation.. 19
M-05 Revoking permit implementation doesn’t match the code comment..21
M-06 Liquidator can inflate the repayment amount by borrowing and repaying again..................................23
Low Severity Issues.. 24
L-01 Signed accounts aren’t tracked for changes, even though they might be owned by the margin
program... 24
L-02 Liquidator can DoS liquidation by repeatedly registering themselves as the liquidator and not doing
anything...26
L-03 Exchange rate might be zero if only uncollected fees remain in the pool.. 28
L-04 Liquidator can repay non past-due positions... 30
L-05 Liquidator can repay more than necessary to make the account healthy.. 31
Informational Severity Issues.. 32
I-01. Rename parameter named ‘test’ to a meaningful name... 32
I-02. When registering position revert if position already exists.. 33
I-03. It’s best practice to assign ownership to system program when closing account................................. 34
I-04. Uncollected fees might lead to underflow if they’re lost due to bad debt.. 35

Disclaimer.. 36
About Certora.. 36

​ 2

 ​ ​ ​ ​ ​ ​ ​

Project Summary
Project Scope

Project Name Repository (link)
Latest Commit
Hash

Platform

Glow V1
https://github.com/Blueprint-F
inance/glow-v1

108ca01 Solana

Project Overview

This document describes the findings of the manual review of Glow V1. The work was undertaken from Nov 7
to Dec 4, 2024

The following contract list is included in our scope:

programs/margin-pool/src/instructions/margin_refresh_position.rs
programs/margin-pool/src/instructions/close_loan.rs
programs/margin-pool/src/instructions/configure.rs
programs/margin-pool/src/instructions/withdraw.rs
programs/margin-pool/src/instructions/repay.rs
programs/margin-pool/src/instructions/margin_borrow_v2.rs
programs/margin-pool/src/instructions/deposit.rs
programs/margin-pool/src/instructions/admin/mod.rs
programs/margin-pool/src/instructions/admin/admin_transfer_loan.rs
programs/margin-pool/src/instructions/collect.rs
programs/margin-pool/src/instructions/margin_repay.rs
programs/margin-pool/src/instructions/create_pool.rs
programs/margin-pool/src/instructions/margin_borrow.rs
programs/margin-pool/src/instructions/register_loan.rs
programs/margin-pool/src/instructions.rs
programs/margin-pool/src/events.rs
programs/margin-pool/src/util.rs
programs/margin-pool/src/lib.rs
programs/margin-pool/src/state.rs
programs/airspace/src/instructions/airspace_permit_revoke.rs

​ 3

https://github.com/Blueprint-Finance/glow-v1
https://github.com/Blueprint-Finance/glow-v1

 ​ ​ ​ ​ ​ ​ ​

programs/airspace/src/instructions/airspace_permit_issuer_revoke.rs
programs/airspace/src/instructions/airspace_set_authority.rs
programs/airspace/src/instructions/airspace_create.rs
programs/airspace/src/instructions/create_governor_id.rs
programs/airspace/src/instructions/set_governor.rs
programs/airspace/src/instructions/mod.rs
programs/airspace/src/instructions/airspace_permit_issuer_create.rs
programs/airspace/src/instructions/airspace_permit_create.rs
programs/airspace/src/events.rs
programs/airspace/src/lib.rs
programs/airspace/src/state.rs
programs/margin/src/instructions/accounting_invoke.rs
programs/margin/src/instructions/configure/configure_account_airspace.rs
programs/margin/src/instructions/configure/configure_adapter.rs
programs/margin/src/instructions/configure/mod.rs
programs/margin/src/instructions/configure/configure_permit.rs
programs/margin/src/instructions/configure/configure_token.rs
programs/margin/src/instructions/register_position.rs
programs/margin/src/instructions/verify_healthy.rs
programs/margin/src/instructions/admin/admin_transfer_position.rs
programs/margin/src/instructions/admin/mod.rs
programs/margin/src/instructions/adapter_invoke.rs
programs/margin/src/instructions/verify_unhealthy.rs
programs/margin/src/instructions/close_position.rs
programs/margin/src/instructions/liquidate_end.rs
programs/margin/src/instructions/create_account.rs
programs/margin/src/instructions/update_position_balance.rs
programs/margin/src/instructions/liquidator_invoke.rs
programs/margin/src/instructions/liquidate_begin.rs
programs/margin/src/instructions/positions/refresh_deposit_position.rs
programs/margin/src/instructions/positions/transfer_deposit.rs
programs/margin/src/instructions/positions/create_deposit_position.rs
programs/margin/src/instructions/positions/mod.rs
programs/margin/src/instructions/positions/refresh_position_config.rs
programs/margin/src/instructions/lookup_tables/create_lookup_table.rs
programs/margin/src/instructions/lookup_tables/append_to_lookup.rs
programs/margin/src/instructions/lookup_tables/mod.rs
programs/margin/src/instructions/lookup_tables/init_lookup_registry.rs
programs/margin/src/instructions/close_account.rs
programs/margin/src/instructions.rs

​ 4

 ​ ​ ​ ​ ​ ​ ​

programs/margin/src/adapter.rs
programs/margin/src/events.rs
programs/margin/src/util.rs
programs/margin/src/lib.rs
programs/margin/src/state/config.rs
programs/margin/src/state/account.rs
programs/margin/src/state/account/positions.rs
programs/margin/src/state.rs
programs/margin/src/seeds.rs
programs/margin/src/syscall.rs
programs/metadata/src/lib.rs
programs/control/src/instructions/create_margin_pool.rs
programs/control/src/instructions/create_authority.rs
programs/control/src/instructions/configure_margin_pool.rs
programs/control/src/instructions.rs
programs/control/src/events.rs
programs/control/src/lib.rs

Protocol Overview

Within this document we audited the Glow protocol. The protocol allows users to participate in
non-custodial borrowing and lending marketplaces.​
 The protocol contains 5 programs:

●​ Margin
●​ Margin-pool
●​ Airspace
●​ Control
●​ Metadata

​ 5

 ​ ​ ​ ​ ​ ​ ​

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical - - -

High 3 3 2

Medium 6 6 6

Low 5 5 3

Informational 4 4 3

Total 18 18 14

Severity Matrix

Impact

High Medium High Critical

Medium Low Medium High

Low Low Low Medium

 Low Medium High

 Likelihood

​ 6

 ​ ​ ​ ​ ​ ​ ​

Detailed Findings

ID Title Severity Status

H-01 Anybody can create an issuer, since there’s
no access control to issuer creation

High Fixed

H-02 Bad debt isn’t socialized, causing issues for
lenders

High Acknowledged

H-03 Liquidator can steal funds from the user
without repaying anything

High Fixed

M-01 Attacker can send lamports to metadata
accounts, causing an underflow during
account expansion

Medium Fixed

M-02 Understimation of reallocation size would
revert the tx in metadata.set_entry()

Medium Fixed

M-03 Borrow doesn’t write adapter results, allowing
liquidator to fake repayment

Medium Fixed

M-04 Liquidation filters out borrow and token
decrease from changes calculation, allowing
user to fake liquidation

Medium Fixed

M-05 Revoking permit implementation doesn’t
match the code comment

Medium Fixed

M-06 Liquidator can inflate the repayment amount
by borrowing and repaying again

Medium

L-01 Signed accounts aren’t tracked for changes,
even though they might be owned by the

Low Fixed

​ 7

 ​ ​ ​ ​ ​ ​ ​

margin program

L-02 Liquidator can DoS liquidation by repeatedly
registering themselves as the liquidator and
not doing anything

Low Acknowledged

L-03 Exchange rate might be zero if only
uncollected fees remain in the pool

Low Fixed

L-04 Liquidator can repay non past-due positions Low Acknowledged

L-05 Liquidator can repay more than necessary to
make the account healthy

Low Fixed

​ 8

Unset

 ​ ​ ​ ​ ​ ​ ​

High Severity Issues

H-01 Anybody can create an issuer, since there’s no access control to
airspace_permit_issuer_create_handler()

Severity: High Impact: High Likelihood: Medium

Files:
programs/airspace/src
/instructions/airspace
_permit_issuer_creat
e.rs

Status: Fixed

Description: airspace_permit_issuer_create_handler() creates a new issuer for the
airspace, this function should be called only by the authority of the airspace. ​
However, there’s no check that the signer account ‘authority’ is indeed the authority of the
airspace, allowing anybody to create a new issuer to any airspace.

 /// The airspace authority
 authority: Signer<'info>,

 /// The airspace the regulator will grant permits for
 airspace: Account<'info, Airspace>,

Exploit Scenario:

●​ Governor creates airspace X with Bob as the authority

​ 9

 ​ ​ ​ ​ ​ ​ ​

●​ Eve creates a new issuer to airspace X
●​ Eve can now issue permits to airspace X, without any approval from Bob

Recommendations: Add a check to verify that the authority account is the airspace’s authority.

Blueprint Finance's response: Fixed in 9daa625

Fix Review: Fix confirmed

​ 10

https://github.com/Blueprint-Finance/glow-v1/commit/9daa62524d1b81a09457f077be7e042d66166901

 ​ ​ ​ ​ ​ ​ ​

H-02 Bad debt isn’t socialized, causing issues for lenders

Severity: High Impact: High Likelihood: Medium

Files:
programs/margin/src/i
nstructions/liquidator
_invoke.rs

Status: Acknowledged

Description: The margin and margin-pool programs don’t have any mechanism to socialize
bad debt.​
Not socializing bad debt would cause issues for lenders - since instead of an even distribution of
the loss, the last lenders to withdraw would take all the loss. Motivating all the lenders to
withdraw their funds as soon as possible, making the lending pool unusable.

Exploit Scenario:

●​ The lending pool has 100K USDC from 10 lenders
●​ A sudden price change causes a 10K USDC loss
●​ All lenders rush to withdraw their deposits as soon as possible
●​ The last lender to withdraw takes all the loss
●​ At this point nobody is going to deposit any funds to the pool, since the last lender would

immediately withdraw them

Recommendations: Add a mechanism to socialize bad debt

Blueprint Finance's response: The issue has not been fixed at this time, and is scheduled to be
fixed in future. While the protocol does not have a mechanism to socialize losses, we have admin
instructions that we can use to transfer bad debt from margin accounts and absorb the losses.
We deem this mechanism to be sufficient to remedy any losses in the short term, especially as
we have only enabled margin pools as our initial adapter in the protocol.

​ 11

 ​ ​ ​ ​ ​ ​ ​

​ 12

 ​ ​ ​ ​ ​ ​ ​

H-03 Liquidator can steal funds from the user without repaying anything

Severity: High Impact: High Likelihood: Medium

Files:
programs/margin/src/i
nstructions/liquidator
_invoke.rs

Status: Fixed

Description: During liquidation, the liquidator has full freedom over the account being
liquidated. The only restriction is that the equity loss at the end of the instruction shouldn’t be
more than 4% of the liability.​
A liquidator can use that to swap or borrow more funds (and send them to themselves) from the
account without repaying anything.​
Borrowing more funds wouldn’t only hurt the liquidated account, but also the lenders of the pool
which they borrow from - since this borrow would be a bad debt that wouldn’t get repaid.​
The liquidator can do this multiple times per block (as much that can fit in a single tx), each time
stealing an additional 4% of the liability.

Exploit Scenario:

●​ Bob has an account with 100K USDC borrowed
●​ The position is past due after some time
●​ Eve registers herself as the liquidator, then each round she borrows an additional 4%

from the pool
○​ Assuming we can run a round (begin, invoke and end liquidation) 10 times per tx,

and given a block time of 0.4 seconds on Solana that means Eve can steal ~600K
USDC per minute

●​ The pool is emptied to the pockets of Eve, causing a permanent loss of funds both to
Bob and the lenders

​ 13

 ​ ​ ​ ​ ​ ​ ​

Recommendations: Consider restricting the actions of the liquidator - don’t allow to borrow
any more funds, cap the equity loss as a percentage of the repaid amount (rather than
percentage of the liability)

Blueprint Finance's response: Fixed in commit e4ecd1b which prevents an available collateral
decrease

Fix Review: Fix confirmed

​ 14

https://github.com/Blueprint-Finance/glow-v1/commit/e4ecd1b7238b16052bc91c2f2565af88c232f238

JavaScript

 ​ ​ ​ ​ ​ ​ ​

Medium Severity Issues

M-01 Attacker can send lamports to metadata accounts, causing an underflow
during account expansion

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/metadata/sr
c/lib.rs

Status: Fixed

Description: When metadata.set_entry() instruction is called, we expand the account
memory if needed.​
During the calculation of the lamports needed to transfer we subtract the current balance from
the minimum amount needed. The assumption is that the current balance would always be less
than the needed balance. However, an attacker can send lamports to the account, causing an
underflow in this subtraction.​

 let transfer_amount = rent
 .minimum_balance(data_len)
 .checked_sub(metadata_account.lamports())
 .unwrap();

Exploit Scenario:

●​ Control authority creates an account for TokenMetadata
●​ An attacker sends 0.002 SOL to the account

●​ When control authority tries to call set_entry() to set the data, the calculation above
would underflow and revert the tx

Recommendations: Use saturating_sub() to avoid underflow
​ 15

 ​ ​ ​ ​ ​ ​ ​

Blueprint Finance's response: Fixed in 851f3ac

Fix Review: Fix confirmed

​ 16

https://github.com/Blueprint-Finance/glow-v1/commit/851f3acab11515924ff0d88a994b77b1069ae92a

JavaScript

 ​ ​ ​ ​ ​ ​ ​

M-02 Under-estimation of reallocation size would revert the tx in
metadata.set_entry()

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/metadata/sr
c/lib.rs

Status: Fixed

Description: metadata.set_entry() sets the data array at some offset in the account.​
If the memory of the account needs to be expanded to set the data we call realloc() to
expand the memory.​
However the new account size is wrongly calculated, we account only for the length of data and

omit the offset.​
This would cause the tx to revert when trying to assign the data.

 let data_len = data.len();
 let account_len = metadata_account.data_len();

.......
 metadata_account.realloc(data_len, true)?;

Exploit Scenario:

●​ Control authority creates a metadata account for PositionTokenMetadata and sets its
data

●​ Control authority tries to change the value_modifier field of this account, and passes

on the data and the right offset
●​ The tx reverts due the wrong reallocation

​ 17

 ​ ​ ​ ​ ​ ​ ​

Recommendations: Account for the offset as well in data_len

Blueprint Finance's response: Fixed in 851f3ac

Fix Review: Fix confirmed

​ 18

https://github.com/Blueprint-Finance/glow-v1/commit/851f3acab11515924ff0d88a994b77b1069ae92a

 ​ ​ ​ ​ ​ ​ ​

M-03 Borrow doesn’t write adapter results, allowing liquidator to fake repayment

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/margin-pool
/src/instructions/margi
n_borrow.rs​
programs/margin-pool
/src/instructions/margi
n_borrow_v2.rs

Status: Fixed

Description: The margin-pool program is supposed to communicate back to the margin
program every change to a position (borrow, repay, closing and opening of a new position) as
return data.​
However, that communication is absent when borrowing (both v1 and v2).​
The margin program relies on that communication to calculate the net amount repaid and
prevent the user from getting liquidation fee if they repaid and then borrowed back again. The
absence of this communication would allow the liquidator to fake liquidation and get a fee for it.

Exploit Scenario:

●​ Bob has a position with 100K USDC debt that’s unhealthy/liquidatable
●​ Eve registers herself as the liquidator, then repays 80K and borrows it back again
●​ Eve gets 4K USDC as a fee despite not repaying anything

Recommendations: Communicate the change to the margin program on borrowing

Blueprint Finance's response: Fixed in 01a74b3

Fix Review: Fix confirmed

​ 19

https://github.com/Blueprint-Finance/glow-v1/commit/01a74b3e46c59f5d02e05a26f6c59577027a04e5

JavaScript

 ​ ​ ​ ​ ​ ​ ​

M-04 Liquidation filters out borrow and token decrease from changes calculation,
allowing user to fake liquidation

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/margin/src/i
nstructions/liquidator
_invoke.rs

Status: Fixed

Description: In the liquidator_invoke_handler() function the function attempts to track
the total increase by summing up the total increases and subtracting the total decreases, and
the total repayment by summing up the repayments and subtracting the total borrows.​
However, the program filters out both the borrows and the external decreases.​
This means they won’t be subtracted from the increases/repayments sum, and a liquidator can
fake liquidation by repaying and borrowing the same amount back again.

 let fee_relevant_changes = token_changes
 .iter()
 .filter(|c| {
 c.mint == ctx.accounts.liquidator_fee_mint.key()
 && [
 TokenBalanceChangeCause::ExternalIncrease,
 TokenBalanceChangeCause::Repay,
]
 .contains(&c.change_cause)
 })
 .collect::<Vec<_>>();
 // The fee for swaps is based on the lower of the increase in the token and the repaid
amount
 let increases: i128 = fee_relevant_changes
 .iter()
 .map(|c| {
 match c.change_cause {

​ 20

 ​ ​ ​ ​ ​ ​ ​

 TokenBalanceChangeCause::ExternalIncrease => c.tokens as i128,
 // Offset increases
 TokenBalanceChangeCause::ExternalDecrease => c.tokens as i128 * -1,
 _ => 0,
 }
 })
 .sum();

 let repayments: i128 = fee_relevant_changes
 .iter()
 .map(|c| match c.change_cause {
 TokenBalanceChangeCause::Borrow => c.tokens as i128 * -1,
 TokenBalanceChangeCause::Repay => c.tokens as i128,
 _ => 0,
 })
 .sum();

Exploit Scenario:

●​ Bob has a position with 100K USDC debt that’s unhealthy/liquidatable
●​ Eve registers herself as the liquidator, then repays 80K and borrows it back again
●​ Eve gets 4K USDC as fee despite not repaying anything

Recommendations: Don’t filter out external decrease and borrow

Blueprint Finance's response: Fixed in 4673562

Fix Review: Fix confirmed

​ 21

https://github.com/Blueprint-Finance/glow-v1/commit/4673562eae8b0a56a1032515258ce5c257c84d1c

JavaScript

JavaScript

 ​ ​ ​ ​ ​ ​ ​

M-05 Revoking permit implementation doesn’t match the code comment

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/airspace/src
/instructions/airspace
_permit_revoke.rs

Status: Fixed

Description: The following code comment describes who can revoke a permit and under what
conditions:

 /// * the airspace authority, always
 /// * the regulator that issued the permit, always
 /// * any address, if the airspace is restricted and the regulator license
 /// has been revoked

However, in reality we allow only the issuer and space authority to revoke the permit:

 // The airspace authority or issuing regulator is always allowed to revoke
 if authority != airspace.authority && authority != permit.issuer {
 return err!(AirspaceErrorCode::PermissionDenied);
 }

And on top of that we also don’t allow to revoke on any of the following cases:

●​ Airspace isn’t restricted
●​ Issuer wasn’t revoked

​ 22

JavaScript

 ​ ​ ​ ​ ​ ​ ​

●​ Permit was issued by the airspace​

 // For restricted airspaces, anyone can revoke a permit from a revoked regulator.

 // For unrestricted airspaces, permits cannot be revoked

 if !airspace.is_restricted

 || !ctx.accounts.issuer_id.data_is_empty()
 || permit.issuer == airspace.key()
 {
 return err!(AirspaceErrorCode::PermissionDenied);
 }

Recommendations: Change the code to match the intended design.

Blueprint Finance's response: Fixed in PR #1160

Fix Review: Fix confirmed

​ 23

https://github.com/Blueprint-Finance/glow-v1/pull/1160

 ​ ​ ​ ​ ​ ​ ​

M-06 Liquidator can inflate the repayment amount by borrowing and repaying again

Severity: Medium Impact: Medium Likelihood: Medium

Files:
programs/margin/src/i
nstructions/liquidator
_invoke.rs

Status:

Description: At the end of each liquidation invocation we cancel out borrowing and repayment,
that would prevent the liquidator from inflating the repayment amount by borrowing and
liquidating in the same invocation.​
However, the liquidator can still do this manipulation in separate invocation - repaying in one
instruction, borrowing in another and then repaying in another.

Recommendations: Ensure the total of borrowing and repayment is never negative at the end of
each liquidation-invoke invocation.

Blueprint Finance's response: Fixed in a6301fe

Fix Review:

​ 24

https://github.com/Blueprint-Finance/glow-v1/commit/a6301fec3b784cfd04ac02448c698e5e77e1b44c

JavaScript

 ​ ​ ​ ​ ​ ​ ​

Low Severity Issues

L-01 Signed accounts aren’t tracked for changes, even though they might be owned
by the margin program

Severity: Low Impact: Medium Likelihood: Low

Files:
programs/margin/src/a
dapter.rs

Status: Fixed

Description: For each adapter invocation the program tracks balance changes and returns them
to the calling function. This is used later at liquidation.​
However, the program skips accounts that are signed and doesn’t track their changes, assuming
they wouldn’t be token accounts that are owned by the margin-account.​
This assumption is mostly true, however there might be an external program that would allow the
users to provide their own account as a token account, as long as the token’s owner/authority is
the margin account (the account would be owned by the token program, but the user would still
be the signer)​
In that case, we’ll might have an account that’s owned by the margin account and also signed at
this point.

 if KNOWN_EXTERNAL_PROGRAMS.contains(ctx.adapter_program.key) {
 // Track balance changes if the invocation is for known external programs
 for account_info in ctx.accounts {
 // Looking for (writable) token accounts to get their balances before the
invocation.
 // Short-circuit
 if !account_info.is_writable || account_info.is_signer || account_info.executable
{
 continue;

​ 25

 ​ ​ ​ ​ ​ ​ ​

Recommendations: Don’t skip tracking for signed account

Blueprint Finance's response: Fixed in 894fe44

Fix Review: Fix confirmed

​ 26

https://github.com/Blueprint-Finance/glow-v1/commit/894fe44dff2214b4b91b6b26d243268497615c8a

 ​ ​ ​ ​ ​ ​ ​

L-02 Liquidator can DoS liquidation by repeatedly registering themselves as the
liquidator and not doing anything

Severity: Low Impact: Medium Likelihood: Low

Files:
programs/margin/src/i
nstructions/liquidate_
begin.rs

Status: Acknowledged

Description: In order to execute liquidation the liquidator first calls the ‘begin liquidation’
instruction, which registers them as the liquidator and gives them exclusivity over the liquidation
- nobody else can liquidate as long as ‘end liquidation’ wasn’t called (either by the liquidator, or
after time out).​
A liquidator can use this to prevent liquidation - they’ll just begin liquidation and do nothing.
When the liquidation is about to time out they’ll simply end the liquidation and begin the
liquidation again.

Exploit Scenario:

●​ Bob has an unhealthy account with a debt of 100K USDC
●​ Eve is a liquidator, she is also a friend of Bob and wants to help him to prevent the

liquidation of his account
●​ Eve begins liquidation on Bob’s account but does nothing
●​ When the liquidation is about to time out (after 60 seconds) Eve ends the liquidation

and begins the liquidation in the same transaction
●​ Eve keeps doing so, preventing anybody from liquidating the account

Recommendations: Require a deposit from the liquidator, if the liquidator doesn’t do anything
foreclose the deposit.

​ 27

 ​ ​ ​ ​ ​ ​ ​

Blueprint Finance's response: Acknowledged, the liquidators are whitelisted and trusted not to
carry out this attack.

​ 28

JavaScript

 ​ ​ ​ ​ ​ ​ ​

L-03 Exchange rate might be zero if only uncollected fees remain in the pool

Severity: Low Impact: High Likelihood: Very low

Files:
programs/margin-pool
/src/state.rs

Status: Fixed

Description: In order to calculate the deposit exchange rate, we take the total value that’s held
in the pool and divide by the total of deposit notes.​
If the total value is less than 1, we take 1 as the numerator. However this check is done before we
subtract the total uncollected fees.​
In case we have only uncollected fees in the pool and their total is one or more we’ll end up with
a zero exchange rate, leading to loss of funds to whoever deposits.​

 pub fn deposit_note_exchange_rate(&self) -> Number { // tokens per notes
 let deposit_notes = std::cmp::max(1, self.deposit_notes);
 let total_value = std::cmp::max(Number::ONE, self.total_value());
 (total_value - *self.total_uncollected_fees()) / Number::from(deposit_notes)
 }

Exploit Scenario:

●​ Total uncollected fees reach 1 token
●​ Depositors withdraw all of their notes so only uncollected fees remain in the pool
●​ Bob deposits 10K USDC into the pool
●​ Given a zero exchange rate, Bob receives zero notes and gets no funds in return

​ 29

 ​ ​ ​ ​ ​ ​ ​

Recommendations: Do the max() check after subtracting the uncollected fees

Blueprint Finance's response: Fixed in PR #1125

Fix Review: Fix confirmed

​ 30

https://github.com/Blueprint-Finance/glow-v1/pull/1125

 ​ ​ ​ ​ ​ ​ ​

L-04 Liquidator can repay non past-due positions

Severity: Low Impact: High Likelihood: Very low

Files:
programs/margin/src/i
nstructions/liquidator
_invoke.rs

Status: Acknowledged

Description: An account can be liquidated once it becomes unhealthy, which is if it’s either
insolvent (more liability than collateral) or one of the positions is past due.​
Meaning once one of the positions is past due the liquidators can liquidate it. There’s no check to
enforce that only the past due position would be repaid, so the liquidators can also liquidate
other positions and get a fee for that.​

Exploit Scenario:

●​ Bob has a position of 3K USDC that’s past due, and a position of 100K USDT that’s not past
due

●​ Eve begins liquidation, she repays the 100K USDT position and gets 5K USDT as a
liquidation fee

●​ Bob paid a fee for a liquidation that wasn’t necessary

Recommendations: If the reason for liquidation is only past due - allow to repay only the past
due position.

Blueprint Finance's response: Acknowledged, currently there’s no adapter that uses the ‘past
due’ feature, we’ll likely fix this in a future release.

​ 31

 ​ ​ ​ ​ ​ ​ ​

L-05 Liquidator can repay more than necessary to make the account healthy

Severity: Low Impact: Medium Likelihood: Low

Files:
programs/margin/src/i
nstructions/liquidator
_invoke.rs

Status: Fixed

Description: ​

Exploit Scenario:

●​ Bob has 100K USDC debt that requires 20% (20K USD) worth of collateral
●​ Bob’s collateral value drops to 19.9K USD
●​ Swap and liquidation fees total 8% of the repayment amount
●​ Eve liquidates and repays the entire 100K USDC, getting a fee of 5K USDC

○​ This isn’t necessary, since repaying even only 10K USDC can get the position back to
being healthy

Recommendations: Limit the amount the liquidator can repay according to the account’s
status.

Blueprint Finance's response: Fixed in commit e4ecd1b, this limits the amount of available
collateral that can be after liquidation.

Fix Review: Fix confirmed

​ 32

https://github.com/Blueprint-Finance/glow-v1/commit/e4ecd1b7238b16052bc91c2f2565af88c232f238

 ​ ​ ​ ​ ​ ​ ​

Informational Severity Issues

I-01. Rename parameter named ‘test’ to a meaningful name

Description: In the function configure_permit() at the margin program there’s a parameter

named test. This parameter controls whether the given permission parameter (flag) would be
added or removed from the permit account.

Recommendation: Rename the parameter to a meaningful name
​
Blueprint Finance's response: Fixed in 894fe44

Fix Review: Fix confirmed

​ 33

https://github.com/Blueprint-Finance/glow-v1/commit/894fe44dff2214b4b91b6b26d243268497615c8a

 ​ ​ ​ ​ ​ ​ ​

I-02. When registering position revert if position already exists

Description: When a user calls the ‘register position’ instruction if the position already exists the
instruction completes without doing anything.​
This might confuse users, in case that the token config has changed since the existing position
was registered the users would assume that the new config was applied, when this isn’t the case.

Recommendation: Revert if the position already exists

Blueprint Finance's response: Fixed in 2406885

Fix Review: Fix confirmed

​ 34

https://github.com/Blueprint-Finance/glow-v1/commit/2406885a97097ff79aedc4035399f773ac191e15

 ​ ​ ​ ​ ​ ​ ​

I-03. It’s best practice to assign ownership to system program when closing account

Description: In the metadata.remove_entry() instruction we’re closing the account by
zeroing the discriminator and transferring all lamports from the account to another account.​
This works, but it’s best practice to also reallocate the account size to zero and transfer
ownership of the account to the system program, the same way that Anchor handles account
closure.

Blueprint Finance's response: Fixed in 851f3ac

Fix Review: Fix confirmed

​ 35

https://github.com/Blueprint-Finance/glow-v1/commit/851f3acab11515924ff0d88a994b77b1069ae92a

JavaScript

 ​ ​ ​ ​ ​ ​ ​

I-04. Uncollected fees might lead to underflow if they’re lost due to bad debt

Description: Currently bad debt socialization isn’t implemented, but in case it would be the
total uncollected fees might be more than the total value (i.e. even the total uncollected fees
might be lost due to bad debt). This would lead to an underflow and would DoS deposits to the
pool.

 pub fn deposit_note_exchange_rate(&self) -> Number { // tokens per notes

 let deposit_notes = std::cmp::max(1, self.deposit_notes);

 let total_value = std::cmp::max(Number::ONE, self.total_value());

 (total_value - *self.total_uncollected_fees()) / Number::from(deposit_notes)

 }

Recommendation: Pay attention to this if/when implementing bad debt socialization and ensure
underflow is prevented.

Blueprint Finance's response: Would fix when implementing bad debt socialization.

​ 36

 ​ ​ ​ ​ ​ ​ ​

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

​ 37

	​
	Security Assessment
	Project Summary
	Project Scope
	Project Overview
	Protocol Overview

	Findings Summary
	Severity Matrix

	Detailed Findings
	
	High Severity Issues
	H-01 Anybody can create an issuer, since there’s no access control to airspace_permit_issuer_create_handler()
	H-02 Bad debt isn’t socialized, causing issues for lenders
	H-03 Liquidator can steal funds from the user without repaying anything
	Medium Severity Issues
	M-01 Attacker can send lamports to metadata accounts, causing an underflow during account expansion
	
	M-02 Under-estimation of reallocation size would revert the tx in metadata.set_entry()
	M-03 Borrow doesn’t write adapter results, allowing liquidator to fake repayment
	M-04 Liquidation filters out borrow and token decrease from changes calculation, allowing user to fake liquidation
	M-05 Revoking permit implementation doesn’t match the code comment
	M-06 Liquidator can inflate the repayment amount by borrowing and repaying again
	Low Severity Issues
	L-01 Signed accounts aren’t tracked for changes, even though they might be owned by the margin program
	L-02 Liquidator can DoS liquidation by repeatedly registering themselves as the liquidator and not doing anything
	L-03 Exchange rate might be zero if only uncollected fees remain in the pool
	L-04 Liquidator can repay non past-due positions
	L-05 Liquidator can repay more than necessary to make the account healthy
	Informational Severity Issues
	I-01. Rename parameter named ‘test’ to a meaningful name
	I-02. When registering position revert if position already exists
	I-03. It’s best practice to assign ownership to system program when closing account
	I-04. Uncollected fees might lead to underflow if they’re lost due to bad debt

	Disclaimer
	
	
	About Certora

