Prepared by

Prepared for
Karolina

Frank Bachman
Bryce Casaje

Zellic

Blueprint Finance

August 13,2025

Glow Protocol

Solana Application Security Assessment

\\l/lT/I\\ ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025
Contents About Zellic 4
1. Overview 4

11 Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

14. Results 6

2. Introduction 6

21. About Glow Protocol 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 10

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Restricted airspace permit has incorrectissuer ID 1

3.2. Instructioncollect_liquidation_fee usesalocal copy of LiquidationState 13

3.3. Anyone can revoke a permit in an unrestricted airspace 15

3.4. Governor can transfer user positions and loans 17

3.5. Two-step finalize mechanism breaks on incorrect pubkey 20

3.6. Margin register-position inconsistency 22

3.7. Registry state corruption when reusing empty slots 24

3.8. Registry-creation denial of service via rent manipulation 26

Zellic © 2025 < Back to Contents Page 2 of 134

1% :

\\4W ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025
3.9. Token-config reinitialization bypasses update checks 28

3.10. Instruction configure_token underly-
ing_mint_token_program 30
4. Discussion 31
41. Improvements to account constraints 32
4.2. Recommendations for PDA seed design 33
4.3. Adapter-invoke trust model 33
4.4. Library error handling 34
4.5. Testsuite 35
5. Threat Model 35
51. Program: address-lookup-table-registry 36
5.2. Program: airspace 44
5.3. Program: margin-pool 58
5.4. Program: margin 85
5.5. Program: metadata 129
6. Assessment Results 133
6.1. Disclaimer 134
Zellic © 2025 < Back to Contents Page 3 0f 134

Glow Protocol Solana Application Security Assessment August 13,2025

About Zellic

Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, and more.

Prior to Zellic, we founded the #1CTF (competitive hacking) team 2 worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

For more on Zellic's ongoing security research initiatives, check out our website zellic.io » and follow
@zellic_io »on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io 2.

1Z
N
)

Zellic © 2025

< Back to Contents Page 4 0f 134

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

3 .
> ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

1. Overview 11. Executive Summary

Zellic conducted a security assessment for Blueprint Finance from June 27th to July 21st, 2025.
During this engagement, Zellic reviewed Glow Protocol's code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

» Are there logic bugs that could result in users performing actions that they are not
permitted to?

» Are there valuation errors with the Pyth oracle implementation?
» Are users able to register positions that bypass token_features isolation?

1.3. Non-goals and Limitations

We did not assess the following areas that were outside the scope of this engagement:

» Front-end components
« Infrastructure relating to the project
» Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

Significant progress has been made in addressing the identified findings, strengthening the overall
security posture of the codebase. Nine of the issues have been remediated, and one has
been acknowledged with an explanation. However, given the number and nature of the issues
uncovered during the audit, we recommend conducting additional security assessments to ensure
no additional issues remain.

Werecognize thatthe codebaseislive in production and therefore recommend deploying these fixes
as promptly as possible to minimize potential risk.

Zellic © 2025 < Back to Contents Page 5 of 134

3 .
> ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

1.4. Results

During our assessment on the scoped Glow Protocol programs, we discovered 10 findings. No
critical issues were found. Five findings were of high impact, four were of medium impact, and one
was of low impact.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of
Blueprint Finance in the Discussion section (4. 7).

Breakdown of Finding Impacts

Impact Level Count
M Critical 0
B High 5

Medium 4
B Low 1
B Informational 0

Zellic © 2025 < Back to Contents Page 6 0f 134

3 .
> ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

2. Introduction 2.1. About Glow Protocol

Blueprint Finance contributed the following description of Glow Protocol:

Glow Protocol is a leveraged protocol that allows users leverage across supported integra-
tions in the Solana ecosystem. It works though adapters that integrate with other programs,
allowing users to transact with leverage. The protocol currently includes borrowing & lending
and leveraged staking using Glow’s GlowSOL.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
both automated testing and manual review. These processes can vary significantly per engagement,
but the majority of the time is spent on a thorough manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, we may also employ sophisticated analyzers such as model
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the programs.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time permitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case

Zellic © 2025 < Back to Contents Page 7 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that the mostimportant findings come first in the document, rather
than being strictly ordered on impact alone. Thus, we may sometimes emphasize an "Informational"
finding higher than a"Low" finding. The key distinction is thatalthough certain findings may have the
same impact rating, their importance may differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped programs itself. These observations — found in the Discussion
(4.) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025

< Back to Contents Page 8 0of 134

3 .
> ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

2.3. Scope

The engagement involved a review of the following targets:

Glow Protocol Programs

Type Rust

Platform Solana

Target glow-vi

Repository https:/github.com/Blueprint-Finance/glow-v1 #
Version la2ac73cccfd316c26703ada8724f6155b73df72
Programs programs/margin/**

programs/margin-pool/**
programs/airspace/**
programs/metadata/**
libraries/rust/program-common/**
libraries/rust/program-proc-macros/**

Target lookup-table-registry

Repository https://github.com/Blueprint-Finance/lookup-table-registry =
Version 71ce34e338b0266dchabea351e052531707004¢c9

Programs programs/**

Zellic © 2025 < Back to Contents Page 9 0f 134

https://github.com/Blueprint-Finance/glow-v1
https://github.com/Blueprint-Finance/lookup-table-registry

3 .
> ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of five person-weeks. The assess-
ment was conducted by two consultants over the course of four calendar weeks.

Contact Information

The following project managers were associ- The following consultants were engaged to
ated with the engagement: conduct the assessment:
Jacob Goreski Frank Bachman
4+ Engagement Manager ¥+ Engineer
jacob@zellic.io 7 frank@zellic.io #
Chad McDonald Bryce Casaje
¥+ Engagement Manager ¥t Engineer
chad@zellic.io # bryce@zellic.io 7

Pedro Moura
Engagement Manager
pedro@zellic.io 7

/-
N

2.5. Project Timeline

The key dates of the engagement are detailed below.

June 27,2025 Start of primary review period

June 30,2025 Kick-off call

July 21,2025 End of primary review period

Zellic © 2025 < Back to Contents Page 10 of 134

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:pedro@zellic.io
mailto:frank@zellic.io
mailto:bryce@zellic.io

£ :
NS
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3. Detailed Findings 3.1. Restricted airspace permit has incorrect issuer ID
Target airspace
Category Business Logic Severity High
Likelihood High Impact High
Description

When a permitis issued by the airspace's authority, the permit issuer is set to the airspace's key
instead of the actual issuer's key.

permit.issuer = if airspace.authority == authority.key() {
airspace.key()
} else {

authority.key()
g

This causes a flaw in the revocation logic for restricted airspaces.

The airspace_permit_revoke instruction attempts to load an AirspacePermitIssuerId account
using the permit's issuer as a seed:

#[account (
seeds = [
AIRSPACE_PERMIT_ISSUER,
airspace.key().as_ref(),
permit.issuer.as_ref()
1,
bump
)1
issuer_id: AccountInfo<'info>,

The revocation logic checks three conditions to determine if revocation should be blocked:

// programs/airspace/src/instructions/airspace_permit_revoke.rs:69-85

// The airspace authority, who can always revoke

let is_airspace_authority = authority == airspace.authority;

// The permit issuer, who can always revoke

let is_airspace_permit_issuer = authority == permit.issuer;

/1 Check if the airspace is restricted and the regulator license has NOT been

Zellic © 2025 < Back to Contents Page 11 0f 134

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

revoked,

let is_restricted_issuer_not_revoked =
airspace.is_restricted && !ctx.accounts.issuer_id.data_is_empty();

if !is_airspace_authority && !is_airspace_permit_issuer &&
is_restricted_issuer_not_revoked {
return err!(AirspaceErrorCode: :PermissionDenied);

Since no AirspacePermitIssuerIdaccount exists for the airspace itself,
issuer_id.data_is_empty() always returns true, making is_restricted_issuer_not_revoked
= false.

Since is_restricted_issuer_not_revoked is false, the check to deny revocation permission fails,
allowing anyone to revoke the permit.

Impact
This vulnerability breaks the access-control mechanism for permit revocation.
This could lead to the following:

» Denial-of-service attacks. Malicious actors can revoke legitimate permits, preventing
authorized users from accessing airspace resources.

» Economic disruption. Users may lose access to positions or assets tied to their permits.

This has a similar impact to Finding 3.3. ».

Recommendations

Fix the permit-creation logic to either not set the issuer ID or to correctly load the
AirspacePermitIssuerlId.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit

2.

Zellic © 2025 < Back to Contents Page 12 of 134

https://github.com/Blueprint-Finance/glow-v1/commit/00b77f9255563673df1b59b0735a41ac03cef926

l :
NN
\4W ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3.2. Instruction collect_liquidation_fee uses a local copy of Liquidation-

State
Target margin
Category Coding Mistakes Severity High
Likelihood High Impact High
Description

The LiquidationState accountis defined with #[account(zero_copy)] to allow for direct
memory operations. However, the Liquidation struct nested inside it also derives the Copy trait.

Inthe collect_liquidation_fee instruction, the state is loaded like this:

let mut liquidation = liquidation_state.state;

When accessing the . state field by value, the compiler creates a local copy of the Liquidation
datainstead of returning a mutable reference into the zero_copy account buffer.

This means any modifications to 1iquidation (like setting is_collecting_fees or clearing fee
slots) are made to a temporary, in-memory copy and are not persisted back to the on-chain
account data.

Impact

This vulnerability causes the collect_liquidation_fee instruction to fail to update the
LiquidationState account correctly. The is_collecting_fees flag is never set, and the fee slots
are not cleared. This can lead to incorrect fee collection and potentially allow liquidators to collect
fees multiple times for the same liquidation.

Recommendations

The collect_liquidation_fee instruction should be updated to use a mutable reference to the
LiquidationState account's state. This can be done by changing the line

let mut liquidation = ctx.accounts.liquidation.load mut()?.state;

to the following:

Zellic © 2025 < Back to Contents Page 13 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

let liquidation = &mut ctx.accounts.liquidation.load mut()?.state;

This will ensure that all modifications to the 1iquidation variable are made directly to the on-chain
account data.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
A,

Zellic © 2025 < Back to Contents Page 14 of 134

https://github.com/Blueprint-Finance/glow-v1/commit/7bd8f87aef7a5c8d0724a73d899e47a6c7c0b067

Glow Protocol Solana Application Security Assessment August 13,2025

3.3. Anyone can revoke a permitin an unrestricted airspace

Target airspace

Category Business Logic Severity High

Likelihood High Impact High
Description

Inthe airspace_permit_revoke instruction, the logic to check if a permit can be revoked is flawed
for unrestricted airspaces.

The check is_restricted_issuer_not_revoked is intended to allow anyone to revoke a permitin
arestricted airspace if the issuer's license has been revoked. However, for unrestricted airspaces,
airspace.is_restrictedis false, which causes is_restricted_issuer_not_revoked to always
be false.

This allows the if condition that prevents unauthorized revocation to be bypassed, meaning anyone
can revoke a permit for an unrestricted airspace.

pub fn airspace_permit_revoke_handler(ctx: Context<AirspacePermitRevoke>) ->
Result<()> {
let airspace = &mut ctx.accounts.airspace;
let permit = &ctx.accounts.permit;
let authority = ctx.accounts.authority.key();

// The airspace authority, who can always revoke
let is_airspace_authority = authority == airspace.authority;
// The permit issuer, who can always revoke
let is_airspace_permit_issuer = authority == permit.issuer;
// Check if the airspace is restricted and the regulator license has NOT
been revoked,
// in which case only the above can revoke the permit.
let is_restricted_issuer_not_revoked =
airspace.is_restricted && !ctx.accounts.issuer_id.data_is_empty();

// If the signer is:

// * NOT the airspace authority

/1l * NOT the permit issuer

!/ * anyone else, in a restricted airspace, and the permit issuer is NOT
revoked

// then the permit can NOT be revoked.

if lis_airspace_authority && !is_airspace_permit_issuer &&

Zellic © 2025

< Back to Contents Page 15 of 134

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

is_restricted_issuer_not_revoked {
return err!(AirspaceErrorCode: :PermissionDenied);

emit! (AirspacePermitRevoked {
airspace: airspace.key(),
permit: permit.key(),

)
Ok (())
}
Impact

This vulnerability allows any user to revoke any permit in an unrestricted airspace, potentially
disrupting the operations of the protocol and its users.

This has a similar impact to Finding 3.1. ».

Recommendations

The logicin airspace_permit_revoke_handler should be updated to correctly handle
unrestricted airspaces. A specific check should be added to ensure that for unrestricted airspaces,
only the airspace authority or the permit issuer can revoke a permit.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit

2.

Zellic © 2025 < Back to Contents Page 16 of 134

https://github.com/Blueprint-Finance/glow-v1/commit/c216ef541846298b9f0320b69ec7f73c4f2b66b9

Glow Protocol Solana Application Security Assessment

August 13,2025

3.4. Governor can transfer user positions and loans

Target margin, margin-pool

Category Business Logic Severity High

Likelihood Low Impact High
Description

Two administrative instructions allow the protocol governor to transfer user assets without

consent, creating significant centralization risks:

1. Thefirst, admin_transfer_position (margin program), allows the governor to transfer

any amount of a user's position to another margin account.

2. The other, admin_transfer_loan (margin-pool program), allows the governor to

transfer debt obligations (loans) from one user to another.

// admin_transfer_position (margin program)

#[derive(Accounts)]

pub struct AdminTransferPosition<'info> {
/// The administrative authority
#[account(address = PROTOCOL_GOVERNOR_ID)]
pub authority: Signer<'info>,

/// The target margin account to move a position into
#[account(mut)]
pub target_account: AccountlLoader<'info, MarginAccount>,

/// The source account to move a position out of
#[account(mut)]

pub source_account: AccountLoader<'info, MarginAccount>,
/]

// admin_transfer_loan (margin-pool program)

#[derive(Accounts)]

pub struct AdminTransferLoan<'info> {
/// The administrative authority
#[account(address = PROTOCOL_GOVERNOR_ID)]
pub authority: Signer<'info>,

/// The loan account to be moved from

Zellic © 2025

< Back to Contents

Page 17 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

#[account(mut, token::authority = margin_pool)]
pub source_loan_account: InterfaceAccount<'info, TokenAccount>,

#[account(mut, token::authority = margin_pool)]
pub target_loan_account: InterfaceAccount<'info, TokenAccount>,

Both instructions have similar security issues:

» The admin_transfer_position instruction does not check if source and target margin
accounts belong to the same airspace, allowing transfers that circumvent airspace
isolation guarantees.

» Neither instruction requires consent from the affected users.

Impact

A compromised governor could use these instructions to do the following:

1. Drain user funds. They could transfer positions or assign debt obligations to arbitrary
accounts, effectively stealing from users.

2. Circumvent security controls. They could move assets between different airspaces,
bypassing isolation guarantees and potentially moving assets from restricted to
unrestricted airspaces.

3. Manipulate debt obligations. They could arbitrarily assign loans to users who never
borrowed funds.

Recommendations

Both administrative transfer instructions should be removed or significantly restricted. If deemed
necessary for administrative purposes, they should be subject to timelock mechanisms,
multi-signature approval, clear usage guidelines that are communicated to users, and checks to
prevent transfers between airspaces.

Remediation
The Blueprint Finance team acknowledged the issue, and provided the following comment:

Our intention is to use the instructions in the worst case where a margin account's equity be-
comes negative. A liquidator would liquidate all assets to repay debts, and leave a margin ac-

Zellic © 2025

< Back to Contents Page 18 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

count only having debts. Outside of those admin functions, we currently don't have a mecha-
nism to socialise losses. [We are working on this for a future release]

We also use a multisig to manage our protocol governance, we consider that to be a mitigation
too, and we have internal controls to ensure that not only the developer team sign and execute
transactions, but management are also involved.

Zellic © 2025

< Back to Contents Page 19 of 134

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3.5. Two-step finalize mechanism breaks on incorrect pubkey

Target airspace

Category Business Logic Severity High

Likelihood Low Impact High
Description

The two-step propose-then-finalize mechanism for transferring authority of an airspace or
governor breaks if a transfer is proposed to an incorrect public key. The AuthorityTransfer struct,
created during the propose step, can only be closed by a successful finalize instruction, which
requires a signature from the proposed new authority:

#[derive(Accounts)]
pub struct AirspaceAuthorityFinalize<'info> {
proposed_authority: Signer<'info>,

#[account (
mut,
close = old_authority,

constraint = transfer.resource == airspace.key(),
constraint = transfer.current_authority == old_authority.key(),
constraint = transfer.new_authority == proposed_authority.key(),

)]

transfer: Account<'info, AuthorityTransfers>,

If this proposed new authority is an incorrect pubkey, the finalize transaction can never be signed,
which prevents the transfer from completing. The airspace_propose_authority and
governor_propose instructions create AuthorityTransfer accounts at a PDA derived from the
airspace or governor ID, restricting the transfer mechanism such that only one transfer can be
pending at a time:

#[derive(Accounts)]
#[instruction(proposed_governor: Pubkey)]
pub struct GovernorPropose<'info> {

Zellic © 2025 < Back to Contents Page 20 of 134

Glow Protocol Solana Application Security Assessment August 13,2025
pending
#[account (
init,
seeds = [

GOVERNOR_ID,
governor_id.key().as_ref(),
I
bump,
space = 8 + std::mem::size_of::<AuthorityTransfer>(),
payer = governor,
)1

transfer: Account<'info, AuthorityTransfers>,

Since the finalize instruction requires a signature from the proposed_authority, if the
proposed_authority isanincorrect public key, the finalize transaction can never be successfully
executed. This permanently locks the authority-transfer mechanism, as a new AuthorityTransfer
cannot be initiated while the previous one is still pending.

Impact

This vulnerability can lead to a permanent loss of control over an airspace or the entire protocol's
governance. If an authority transfer is proposed to an incorrect public key, the ability to transfer the
authority in the future is lost.

Recommendations

A mechanism to cancel a pending authority transfer should be implemented, allowing for the
correction of mistakes and preventing the permanent locking of the authority-transfer mechanism.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
A,

Zellic © 2025

< Back to Contents Page 210f134

https://github.com/Blueprint-Finance/glow-v1/commit/20ce6d071689098cf8c515e37c879ba19e7a574a

£
NS
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3.6. Marginregister-position inconsistency

Target margin

Category Business Logic Severity Medium

Likelihood High Impact Medium
Description

The register_positioninstruction in the margin program is intended to register
adapter-administered tokens (TokenAdmin: : Adapter). However, the implementation has
inconsistent validation logic that prevents proper separation between token types. The system
allows configuring tokens with mismatched admin types and kinds, leading to tokens that cannot
be properly registered through the intended instruction.

account.register_position(
PositionConfigUpdate: :new_from_config(
config,
position_token.decimals,
address,
config
.adapter_program()
.ok_or_else(Ill error!(ErrorCode::InvalidConfigRegisterPosition))?,
)%
&[Approver::MarginAccountAuthority],
)?;

The callto account.register_positionin register_position sets the adapter argument as
config.adapter_program().ok_or_else(|l|

error! (ErrorCode: :InvalidConfigRegisterPosition))?. This means that
adapter-administered tokens (TokenAdmin: : Adapter) can be registered, but margin-administered
tokens (TokenAdmin: :Margin) will fail immediately.

Then, for adapter tokens that pass the first check, MarginAccount: :register_position calls
AccountPosition::may_be_registered_or_closed for a newly added position. The hardcoded
call only contains [Approver: :MarginAccountAuthority], so authority_approved will always be
true,and adapter_approved will always be false.

pub fn may_be_registered_or_closed(&self, approvals: &[Approver]) -> bool {
let mut authority_approved = false;
let mut adapter_approved = false;
for approval in approvals {

Zellic © 2025 < Back to Contents Page 22 0f 134

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

match approval {
Approver::MarginAccountAuthority => authority_approved = true,
Approver: :Adapter(approving_adapter) => {
adapter_approved = *approving_adapter == self.adapter

}
match self.kind() {
TokenKind::Collateral => authority_approved && !adapter_approved,
TokenKind::Claim | TokenKind::AdapterCollateral => {
authority_approved && adapter_approved

This means that the register_position instruction appears to only work for adapter tokens that
are of kind TokenKind: :Collateral. All other token types fail either the adapter requirement or
approval checks.

Impact

This inconsistency can lead to confusion and operational issues for developers and users. The
mismatched validation logic between token configuration and registration creates a system where
certain token configurations cannot be used through their intended registration paths, potentially
leading to developer errors and broken integrations.

Recommendations

The register_position instruction should be updated to strictly enforce that only
adapter-administered tokens can be registered. The configure_token instruction should also be
reviewed to ensure that it correctly validates the token admin and kind, preventing the creation of
inconsistent token configurations.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
A,

Zellic © 2025 < Back to Contents Page 23 of 134

https://github.com/Blueprint-Finance/glow-v1/commit/96fe45b9b58223446298348fc584bf8bdea8b540

Glow Protocol Solana Application Security Assessment August 13,2025

3.7. Registry state corruption when reusing empty slots

Target lookup-table-registry

Category Coding Mistakes Severity Medium

Likelihood High Impact Medium
Description

The create_lookup_table instruction contains a bug in its state-management logic that corrupts
the registry's 1en and capacity counters when reusing previously closed slots. This leads to
permanent registry breakage and fund loss.

The bug occurs in the slot reuse path:

let (len, capacity) = {
let registry = &ctx.accounts.registry_account;
(registry.len, registry.capacity)

g

let append_to_end = len == capacity;

if append_to_end {
ctx.accounts.registry_account.len += 1;

if append_to_end {

} else {
let slot = ctx.accounts.registry_account.find_empty_entry()?;
*slot = entry;

ctx.accounts.registry_account.capacity += 1;

When reusing an empty slot, the instruction fails to increment 1en but still increments capacity,
causing the registry's state counters to become permanently desynchronized from the actual
number of active entries.

Zellic © 2025

< Back to Contents Page 24 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Impact

If this bug occurs, the registry would not be able to be closed because the
close_registry_account instruction requires len == 0, but 1len becomes understated relative to
actual entries.

In addition, subsequent remove_lookup_table operations would panic when they attempt
len.checked_sub(1).unwrap() onaninvalid 1en value, making the registry completely unusable.

Recommendations

Fix the state-update logic to correctly handle both allocation and reuse cases:

if append_to_end {
ctx.accounts.registry_account.len += 1;

ctx.accounts.registry_account.capacity += 1;
} else {

ctx.accounts.registry_account.len += 1;

let slot = ctx.accounts.registry_account.find_empty_entry()?;
*slot = entry;

Additionally, add comprehensive tests covering remove/re-add cycles to prevent similar
state-management bugs.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
A.

Zellic © 2025

< Back to Contents Page 25 of 134

https://github.com/Blueprint-Finance/lookup-table-registry/commit/e7af16f453b42bcb57996b859474e174a4ecf6b2

3 .
> ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3.8. Registry-creation denial of service via rent manipulation

Target lookup-table-registry

Category Coding Mistakes Severity Medium

Likelihood High Impact Medium
Description

The create_lookup_table instruction contains a denial-of-service vulnerability in its
rent-calculation logic. When computing the lamport transfer amount needed to resize the registry
account, the code uses checked_sub () .unwrap (), which panics if the account already has
sufficient lamports.

let transfer_amount = rent
.minimum_balance(new_size)
.checked_sub(registry_info.lamports())
.unwrap();

If registry_info.lamports() is greater than or equal to the required minimum balance,
checked_sub () returns None and unwrap () panics, causing the entire transaction to revert.

Impact

This vulnerability enables a trivial denial-of-service attack if any external actor sends lamports to
the registry PDA address.

By prefunding the registry account to equal or exceed the required balance for the enlarged
account size, an attacker can cause all subsequent create_lookup_table calls to panic and fail.

The attack only costs transaction fees and a small amount of lamports sent to the target registry
and persists until someone drains the excess lamports from the registry account.

Recommendations

Replace the unsafe arithmetic with proper overflow handling:

let required = rent.minimum_balance(new_size);
let transfer_amount = required.saturating_sub(registry_info.lamports());

if transfer_amount > 0 {

Zellic © 2025 < Back to Contents Page 26 of 134

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

Alternatively, use unwrap_or.

let transfer_amount = rent
.minimum_balance(new_size)
.checked_sub(registry_info.lamports())
.unwrap_or(0);

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
398ab566 ~.

Zellic © 2025 < Back to Contents Page 27 of 134

https://github.com/Blueprint-Finance/lookup-table-registry/commit/398ab566d9cccfe93bcb1b87ed747d58b3a44be1

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3.9. Token-config reinitialization bypasses update checks

Target margin

Category Business Logic Severity Medium

Likelihood Medium Impact Medium
Description

The configure_token instruction, designed to manage TokenConfig accounts, utilizes Anchor's
init_if_needed attribute. This allows the same instruction to either initialize a new TokenConfig
account or update an existing one. The program distinguishes between these two operations
usingan is_init flag, whichis setto true if config.mint is Pubkey: :default() (indicating a
newly created account).

The configure_token instruction can be used to close an existing TokenConfig account by
passing None as updated_config:

pub fn configure_token_handler(
ctx: Context<ConfigureToken>,
updated_config: Option<TokenConfigUpdate>,

) -> Result<()> {
let config = &mut ctx.accounts.token_config;

let updated_config = match updated_config {

Some (update) => update,

None => return config.close(ctx.accounts.payer.to_account_info()),
be

An issue arises because several vital immutability checks are only enforced when is_initis
false, meaning they apply exclusively to updates of preexisting configurations. If an attacker uses
the configure_token instruction to close the TokenConfig account, they can then recreate it using
the same seeds via a subsequent call to the same instruction.

This recreation is treated as an initialization by the program (is_init becomes true), allowing the
attacker to bypass all checks that would normally prevent changes to critical token properties.

These bypassed checks include the following:

Zellic © 2025 < Back to Contents Page 28 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* Preventing changes to token_kind
« Enforcing admin type transitions (e.g., disallowing the switch from Adapter to Margin)
* Maintaining adapter address immutability

Restricting changes to token_features (excluding the RESTRICTED flag, which is
designed to be toggleable)

Impact

This vulnerability allows an attacker to bypass intended immutability constraints on TokenConfig
accounts.

This could lead to protocol inconsistency or exploitation of other program logic that expects
certain token config fields to stay constant.

Recommendations

Robust checks should be implemented to prevent reinitialization from bypassing update
constraints.

For example, consider removing init_if_needed and having separate init_token_configand
update_token_config instructions, each with appropriate checks.

Alternatively, prevent the closure of TokenConfig accounts in general if they have critical
immutable properties.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
A,

Zellic © 2025 < Back to Contents Page 29 of 134

https://github.com/Blueprint-Finance/glow-v1/commit/b7faccbe361b94a5663c3512f67ed88f37e725c2

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

3.10. Instruction configure_token should validate underly-
ing_mint_token_program

Target margin

Category Coding Mistakes Severity Low

Likelihood Low Impact Low
Description

The configure_token instruction does not validate that the underlying_mint_token_program
field in the TokenConfigUpdate is a valid token program. An administrator could inadvertently set
this to an arbitrary public key.

config.mint = ctx.accounts.mint.key();
config.mint_token_program = *ctx.accounts.mint.to_account_info().owner;
config.airspace = ctx.accounts.airspace.key();
config.underlying_mint = updated_config.underlying_mint;
config.underlying_mint_token_program

= updated_config.underlying_mint_token_program; // not validated
config.admin = updated_config.admin;
config.token_kind = updated_config.token_kind;
config.value_modifier = updated_config.value_modifier;
config.max_staleness = updated_config.max_staleness;
config.token_features = updated_config.token_features;

The misconfigured underlying_mint_token_programwould be used when creating position
configurations via PositionConfigUpdate: :new_from_config(), which is called in instructions
like register_position:

account.register_position(
PositionConfigUpdate: :new_from_config(
config,
position_token.decimals,
address,
config
.adapter_program()
.ok_or_else(Ill error!(ErrorCode::InvalidConfigRegisterPosition))?,
e
&[Approver: :MarginAccountAuthority],
)?;

7

Zellic © 2025 < Back to Contents Page 30 of 134

l :
N
>N ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

The new_from_config function selects the token program based on token kind and validates it:

pub fn new_from_config(
config: &Account<TokenConfig>,
mint_decimals: u8,
address: Pubkey,
adapter: Pubkey,
) -> anchor_lang::Result<Self> {
let token_program = match config.token_kind {
TokenKind::Collateral => config.underlying _mint_token_program,
TokenKind::Claim => config.mint_token_program,
TokenKind: :AdapterCollateral => config.mint_token_program,

bE

// Check that the token program is a supported token program

if

lanchor_spl::token_interface::TokenAccount: :owners().contains(&token_program)

{
msg! ("Unsupported token program: {}", token_program);
return err! (ErrorCode: :UnknownTokenProgram) ;

}

//

}
Impact

If the underlying_mint_token_programis invalid, downstream validation will catch it and cause
position registration to fail. This prevents any direct loss of funds but results in a denial of service
for the specific token until the configuration is corrected.

Recommendations

The configure_token instruction should be updated to validate that the
underlying_mint_token_programis a valid and known token program address (e.g., spl-token or
spl-token-2022).

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
bf57aade ~.

Zellic © 2025 < Back to Contents Page 310f 134

https://github.com/Blueprint-Finance/glow-v1/commit/bf57aade7c5106984c945f3d2612d812b04e772a

Glow Protocol Solana Application Security Assessment August 13,2025

4. Discussion

The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

41. Improvements to account constraints

During the audit, several instructions were identified where account constraints could be
strengthened. While these cases do not represent currently exploitable vulnerabilities, adding
stricter top-level constraints provides better defense in depth, improves code clarity, and makes
the programs more robust against future code changes.

For example, many instructions take an authority account and a margin account and then verify the
authority is allowed to modify the margin account by later calling
margin_account.verify_authority(authority.key())?;. The relationship between the two
accounts is not made clear in the account constraints. In addition, verify_authority could get
moved around in future code changes. Adding a constraint to the account struct would help
improve the clarity and reduce security risk for these instructions.

In addition, inmetadata: :remove_entry and margin::close_account,the receiver account
should be constrained as a SystemAccount because it receives rent from closed accounts and
should be a user-owned wallet. This is not currently a vulnerability because providing an invalid
account (e.g., a PDA owned by another program) would only cause the user's own transaction to
fail, not affect the protocol or other users.

Ininstructions like margin: : transfer_deposit, accounts used as token-transfer authorities
(source_owner) are passed as AccountInfo but should be passed as Signer. Thisis nota
vulnerability because the downstream token program correctly validates that the authority is a
transaction signer. However, making it an explicit Signer constraint improves clarity and security
posture.

A similar and more critical example is the margin: : refresh_deposit_position instruction. This
instruction accepts an AccountInfo from remaining_accounts and reads its balance using a raw
accessor (token: :accessor: :amount) without first validating that the account is a legitimate SPL
Token Account. While this appears to be a critical vulnerability allowing an attacker to fake their
balance, the instruction is saved by a downstream check inside the set_position_balance
function. This function verifies that the key of the provided account matches the token account
address that was securely stored when the position was originally registered.

Although this downstream check currently prevents an exploit, it demonstrates the principle of
defense in depth. Relying on complex downstream logic for security can be fragile. The instruction
would be more robust and auditable if it performed top-level validation on the account from
remaining_accounts, for example by attempting to deserialize it as an Option<Account<'_,
TokenAccount>> and verifying its mint and owner immediately. There are many other cases where
the top-level constraints are not enough, but checks in the set_position_balance function
prevent vulnerabilities.

Zellic © 2025

< Back to Contents Page 32 of 134

l :
NN
\4W ZeIIIC Glow Protocol Solana Application Security Assessment August 13,2025

Adopting stricter top-level account constraints would make the programs safer, more readable,
and easier to maintain over time by ensuring invariants are enforced at the account validation level
rather than relying on downstream logic.

4.2. Recommendations for PDA seed design

Several PDA derivations in the codebase use similar seed structures without unique prefixes.
While no exploitable cases were found, this pattern increases the risk of collision-based attacks in
future code changes.

Without unique prefixes, PDA collisions could allow attackers to create accounts at addresses
intended for legitimate operations, preventing users from creating necessary accounts and
disrupting protocol functionality.

For example, in the margin-pool program, both account types use [Pubkey, Pubkey] patterns:

» Margin pool — [airspace.key(), token_mint.key()]
» Loan note account — [margin_account.key(), loan_note_mint.key()]

In the airspace program, both use the same prefix:

e Airspace — [AIRSPACE, string_seed]
e AuthorityTransfer — [AIRSPACE, airspace_pubkey]

This specific case is not very exploitable because it would require the airspace's 32-byte public key
to be valid UTF-8 (extremely unlikely) and only the protocol governor can create airspaces.

We recommend using unique, constant prefixes as the first seed for each account type:

[b"margin-pool", airspace.key(), token_mint.key()]
[b"loan-note", margin_account.key(), loan_note_mint.key()]
[b"airspace", string_seed]

[b"authority-transfer", airspace_pubkey]

This approach prevents potential collisions and makes the codebase more maintainable.

4.3. Adapter-invoke trust model

The adapter_invoke instruction grants adapters full signing authority of the margin account
through invoke_signed(). This creates a high-trust model where malicious or compromised
adapters could drain any token accounts passed in the instruction. Several improvements could be
made to help add defenses to prevent some malicious adapter behavior.

Zellic © 2025 < Back to Contents Page 33 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

The system tracks TokenBalanceChange data from adapter invocations but completely ignores the
return values in adapter_invoke, missing opportunities for validation. Consider adding slippage
arguments that ensure that the user's token accounts do not experience unexpected or excessive
changes in balance or value.

In addition, malicious adapters could approve themselves as delegates on token accounts without
changing balances, then exploit this delegation at any time in the future to drain funds. Consider
adding checks to verify that the delegation status of any token account passed in does not change.

4.4, Libraryerror handling

The program-common library extensively uses panic! () and .unwrap() patterns in arithmetic,
conversion, and other functions that are called with user-controlled data in the various programs.
While these do not represent security vulnerabilities, they demonstrate poor error-handling
patterns that could be improved.

For example, the Number128 type implements standard arithmetic operators that panic on overflow:

impl Add for Number128 {
fn add(self, rhs: Self) -> Self::Output {
Number128::from_bits(self.bits.checked_add(rhs.bits).unwrap())

In addition, the Number type also has conversion functions that explicitly panic:

pub fn as_u64(&self, exponent: i32) -> u64 {

if result < O ||l result > u64::MAX as 1128 {
panic! ("Number overflow when converting to u64: {} with exponent {}",
result, exponent);
}
result as u64

The library should consider rewriting the various panic-inducing functions into versions that return
Result types

This approach offers several significant advantages.

First, returning Result explicitly signals to the caller that an operation can fail, forcing them to
handle potential errors gracefully. This promotes robust error handling, preventing unexpected
program termination (panics) that can lead to denial of service or leave the system in an

Zellic © 2025

< Back to Contents Page 34 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

inconsistent state.

Second, Result types provide clear, structured error information, allowing developers to
understand why an operation failed and implement specific recovery logic. In contrast, panics
often provide less actionable information, making debugging and error recovery more challenging.

Finally, using Result aligns with idiomatic Rust practices for recoverable errors, improving code
clarity, maintainability, and composability.

4.5. Testsuite

When building a complex protocol with cross-program interactions, liquidation mechanisms, and
adapter integrations, comprehensive testing is essential. This includes testing for both positive and
negative scenarios. Positive tests should verify that each instruction's side effects are as expected,
while negative tests should cover every error condition, preferably in every logical branch.

Good test coverage has multiple effects:

It finds bugs and design flaws early (preaudit or prerelease)
« It givesinsightinto areas for optimization (e.g., compute unit costs)

It displays code maturity

« Itimproves understanding of how the code functions, integrates, and operates — for
developers and auditors alike

The margin program currently relies heavily on integration testsin /tests/hosted/tests/ with
minimal unit test coverage at the instruction level. While integration tests provide valuable
end-to-end validation, they cannot comprehensively cover all edge cases and error conditions that
unit tests would catch.

We recommend creating unit tests for instructions that currently lack direct testing, such as

* register_position — position registration logic and constraint validation
» accounting_invoke — permissionless adapter invocation without signer authority
» admin_transfer_position —emergency governor transfer functionality

In addition, the other programs like airspace, lookup-table-registry, and more would benefit
from a comprehensive test suite.

Zellic © 2025

< Back to Contents Page 35 of 134

1% :
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

5. Threat Model As time permitted, we analyzed each instruction in the program and created a written threat model
for the most critical instructions. A threat model documents the high-level functionality of a given
instruction, the inputs it receives, and the accounts it operates on as well as the main checks
performed on them; it gives an overview of the attack surface of the programs and of the level of
control an attacker has over the inputs of critical instructions.

For brevity, system accounts and well-known program accounts may not have been included in the
list of accounts received by an instruction; the instructions that receive these accounts make use
of Anchor types, which automatically ensure that the public key of the account is correct.

Discriminant checks, ownership checks, and rent checks are not discussed for each individual
account; unless otherwise stated, the program uses Anchor types, which perform the necessary
checks automatically.

Not all instructions in the audit scope may have been modeled. The absence of a threat model in
this section does not necessarily suggest that an instruction is safe.

51. Program: address-lookup-table-registry

Instruction: init_registry_account

This instruction initializes a new RegistryAccount PDA for the given authority.

Input parameters

None.

Accounts

» authority: The owner/authority of the registry account.

 Signer: Yes.

« Init: No.

« PDA: No.
Mutable: No.

« Constraints: None.

» payer: Pays for account creation and rent.

« Signer: Yes.

* Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: Must have sufficient lamports to fund the registry account.
* registry_account: The registry PDA that will be created and initialized.

Zellic © 2025 < Back to Contents Page 36 of 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: Yes.

» PDA:Yes(seeds = [authority.key.as_ref()], bump stored in seed).
* Mutable: Yes.

» Constraints: space = 8 + size_of::<RegistryAccount>(). Rent-exempt
via payer. Created for authority.

» system_program: The system program.

« Signer: No.

* Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

» Recordsthe currentslotin last_created_slot.
« Initializes internal fields: version = 0,1en = 0,capacity = 0,and tables = [].

» Maximum registry capacity is bounded at compile time to 254 entries; no allocation
beyond the base struct occurs during initialization.

CPI

None.

Instruction: close_registry_account
This instruction closes an empty RegistryAccount and transfers its lamports to recipient.
Input parameters

None.

Accounts

* registry_account: The registry accountto close.

« Signer: No.
 |nit: No.
» PDA: Yes (same PDA derived at init).

Zellic © 2025 < Back to Contents Page 37 of 134

N
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* Mutable: Yes.

» Constraints: has_one = authority;registry_account.len == 0
(otherwise, RegistryNotEmpty). Closed to recipient.

» authority: Authority of the registry account.

« Signer: Yes.
« Init: No.
« PDA: No.
Mutable: No.

» Constraints: Must match registry_account.authority.

» recipient: Receives lamports from the closed account.

« Signer: No.

« Init: No.

« PDA: No.

« Mutable: Yes.

» Constraints: Unchecked; receives the closed funds.

Additional checks and behavior

 Enforces that no entries remain (len == 0) before closing.
» Uses Anchor'sclose = recipient to transfer remaining lamports.

CPI

None.

Instruction: create_lookup_table

This instruction creates a new address lookup table (ALT) via CPI to the Address Lookup Table
program and records it in the registry. It grows the registry account as needed.

Input parameters

* recent_slot: u64: Slotused by the ALT program to derive the table address — also
storedin registry_account.last_created_slot.

» _discriminator: u64: Ignored by this program. A fresh internal discriminator is
computed instead.

Zellic © 2025 < Back to Contents Page 38 0f 134

Glow Protocol Solana Application Security Assessment August 13,2025

Accounts

» authority: Authority of the registry account and ALT creator.

Signer: Yes.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must match registry_account.authority.

» payer: Pays for ALT creation and any registry reallocation rent gap.

Signer: Yes.
Init: No.

PDA: No.
Mutable: Yes.

Constraints: Must have sufficient lamports to fund ALT creation (via CPI) and
registry growth.

* registry_account: The owner’s registry that tracks created ALTs.

Signer: No.

Init: No.

PDA: Yes.

Mutable: Yes.

Constraints: registry_account.authority == authority.key().

» lookup_table: The ALT account being created.

Signer: No.

Init: No (created by the ALT program during CPI).

PDA: No (the ALT address is derived by the ALT program, not a PDA of this
program).

Mutable: Yes.

Constraints: Will be validated by the ALT program; this program verifies the
derived table address matches this account’s key.

» address_lookup_table_program: The ALT program.

Signer: No.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must equal AddressLookupTable1111111111111111111111111,

» system_program: The system program.

Signer: No.
Init: No.

Zellic © 2025

< Back to Contents

Page 39 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« PDA: No.
« Mutable: No.
« Constraints: Must be the system program.

Additional checks and behavior

» Enforces ahard cap: if registry_account.len as usize == MAX_REGISTRY_ENTRIES
(254), it returns TooManyEntries.

» Computes a nonzero entry discriminator as discriminator: :DEACTIVATED + 1and
rejects if <= DEACTIVATED with InvalidDiscriminator.

» Updates registry_account.last_created_slot = recent_slot.

« Handles dynamic growth. If len == capacity, it transfers the rent gap from payer and
reallocates registry_account by REGISTRY_ENTRY_SIZE, thenincrements len by 1.
Otherwise, it reuses an EMPTY slot found via find_empty_entry(). In both cases, it
pushes or places a new RegistryEntry { discriminator, table }andincrements
capacityby1.

» Validates that the ALT address derived by the CPl instruction equals the provided
lookup_table account — otherwise, InvalidLookupTable.

» Errorswith InvalidState if len > capacity — final safety check.

CPI

» Calls address_lookup_table::instruction::create_lookup_table(authority,
payer, recent_slot) and invoke with lookup_table, authority, payer,
system_program,and address_lookup_table_program.

» This CPI creates the ALT account at the derived address.

Instruction: append_to_lookup_table
This instruction appends a list of addresses to an existing ALT recorded in the registry.
Input parameters

« addresses: Vec<Pubkey>: Public keys to add to the ALT.

Accounts

 authority: Authority of the registry account and ALT authority.

« Signer: Yes.
* Init: No.

Zellic © 2025 < Back to Contents Page 40 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« PDA: No.

« Mutable: No.

« Constraints: Must match registry_account.authority.
« payer: Pays for ALT extension if required by the ALT program.

« Signer: Yes.

« Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: None beyond funding requirements.
* registry_account: Registry that must contain the ALT entry.

« Signer: No.
« Init: No.

« PDA: Yes.

« Mutable: No.

» Constraints: registry_account.authority == authority.key().Must
contain an entry for lookup_table whose discriminator > DEACTIVATED.

» lookup_table: The ALT to be extended.

« Signer: No.

« Init: No.

« PDA: No.

* Mutable: Yes.

» Constraints: Validated by the ALT program.
« address_lookup_table_program: The ALT program.

« Signer: No.

« Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must equal AddressLookupTable1111111111111111111111111,
» system_program: The system program.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must be the system program.

Additional checks and behavior

e Looks upthe ALT in registry_account.tables — if not found, InvalidLookupTable.

Zellic © 2025 < Back to Contents Page 410f134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» Rejects appends to deactivated or empty entries (discriminator <= DEACTIVATED)
with InvalidDiscriminator.

CPI

» Calls address_lookup_table::instruction::extend_lookup_table(lookup_table,
authority, Some(payer), addresses) and invoke with lookup_table, authority,
payer, system_program,and address_lookup_table_program.

» This CPl extends the ALT with the provided addresses.

Instruction: remove_lookup_table

This instruction removes an ALT from the registry by first deactivating it (if active) and, upon a
subsequent call, closing it (if already deactivated). Also, it updates the registry’s bookkeeping.

Input parameters

None.

Accounts

* authority: Authority of the registry and ALT.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must match registry_account.authority.
» recipient: Receives lamports when the ALT is closed.

» Signer: Yes.

* Init: No.

» PDA: No.

* Mutable: Yes.

« Constraints: Will receive the closed ALT’s lamports if/when closed.
* registry_account: The registry tracking the ALT entry.

« Signer: No.

« Init: No.

» PDA: Yes.

» Mutable: Yes.

» Constraints: registry_account.authority == authority.key().

Zellic © 2025 < Back to Contents Page 42 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» lookup_table: The ALT to deactivate or close.

« Signer: No.

« Init: No.

» PDA: No.

¢ Mutable: Yes.

» Constraints: Validated by the ALT program.
» address_lookup_table_program: The ALT program.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

» Constraints: Must equal AddressLookupTable1111111111111111111111111,
» system_program: The system program.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

» Fetches a mutable registry entry for lookup_table — if not found, InvalidLookupTable.
» There are several state transitions:

e [fdiscriminator == EMPTY, error InvalidState.

e |[fdiscriminator > DEACTIVATED (active), setsdiscriminator =
DEACTIVATED and deactivates the ALT via CPI.

e Ifdiscriminator == DEACTIVATED, marks entry as EMPTY, zeroes table,
decrements registry_account.len (checked subtraction), and closes the
ALT via CPlto recipient.

» Does not modify capacity — len reflects populated (non-EMPTY) entries.

CPI

« If deactivating, calls
address_lookup_table::instruction::deactivate_lookup_table(lookup_table,
authority) and invoke with lookup_table, authority, and
address_lookup_table_program

« Ifclosing, calls
address_lookup_table::instruction::close_lookup_table(lookup_table,

Zellic © 2025 < Back to Contents Page 43 of 134

Glow Protocol Solana Application Security Assessment

August 13,2025

authority, recipient) and invoke with lookup_table, authority, recipient,

system_program,and address_lookup_table_program.

5.2. Program: airspace

Instruction: create_governor_id

This instruction creates (or initializes if missing) the global GovernorId identity account that stores

the protocol governor address.

Input parameters

None.

Accounts

 payer: Pays rent/fees to create or initialize the governor ID account.

« Signer: Yes.
« Init: No.
» PDA: No.
» Writable: Yes.
» Constraints: None.
» governor_id: The global governor identity account.

« Signer: No.

« Init: Yes (init_if_needed — reinitialization is not performed; fields are only

set if empty).
» PDA: Yes (seed: [GOVERNOR_ID]).
» Writable: Yes.

» Constraints: space = GovernorId::SIZE and payer

» system_program: The system program.

« Signer: No.

« Init: No.

» PDA: No.

» Writable: No.

» Constraints: Must be the system program.

Additional checks and behavior

« Ifgovernor_id.governor is unset (default pubkey), it is set to

payer.

Zellic © 2025

< Back to Contents

Page 44 of 134

Glow Protocol Solana Application Security Assessment

August 13,2025

» payer.key() whenthe testing feature is enabled, and

* PROTOCOL_GOVERNOR_ID otherwise.

» No changes are made if the account is already initialized with a nondefault governor.

CPI

« Implicit CPI to the system program for account creation when init_if_needed triggers.

Instruction: governor_propose

The current governor proposes a new governor. This instruction creates a one-off transfer record
to be later finalized by the proposed governor.

Input parameters

* proposed_governor:

finalization.

Accounts

» governor: The current governor.

« Signer: Yes.
« Init: No.

» PDA: No.

» Writable: Yes.

» Constraints: Must match governor_id.governor.

» governor_id: The global governor identity account.

« Signer: No.

« Init: No.

» PDA: Yes (seeded account, not created here).
» Writable: Yes.

» Constraints: has_one = governor.

» transfer: Temporary authority-transfer record.

« Signer: No.
* Init: Yes.

» PDA:Yes (seeds: [GOVERNOR_ID, governor_id.key()]1).

» Writable: Yes.

Pubkey: The address to be set as the new governor upon

» Constraints: space = 8 + size_of::<AuthorityTransfer>() and payer =
governor. Seed choice guarantees only one open proposal per governor_id.

Zellic © 2025

< Back to Contents

Page 45 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« system_program: The system program.

« Signer: No.

* Init: No.

« PDA: No.

» Writable: No.

 Constraints: Must be the system program.

Additional checks and behavior

o Writes transfer.resource = governor_id.key(), transfer.current_authority =
governor.key(),and transfer.new_authority = proposed_governor.
* Emits GovernorAuthorityTransferRequest.

CPI

 Implicit CPI to the system program to create the transfer PDA.

Instruction: governor_finalize_propose

The proposed governor accepts the transfer and becomes the new governor. It closes the
temporary transfer account, returning rent to the old governor.

Input parameters

None.

Accounts

» proposed_governor: The address that was proposed — must accept.

« Signer: Yes.

« Init: No.

» PDA: No.

» Writable: No.

» Constraints: Must equal transfer.new_authority.
» old_governor: Receives rent from closing transfer.

« Signer: No.
« Init: No.
» PDA: No.

Zellic © 2025 < Back to Contents Page 46 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Writable: Yes.

» Constraints: Must equal governor_id.governor and
transfer.current_authority.

» governor_id: The global governor identity account.

« Signer: No.

« Init: No.

» PDA: Yes.

» Writable: Yes.

» Constraints: governor_id.governor == old_governor.key().
» transfer: The pending transfer record.

« Signer: No.

« Init: No.

» PDA: Yes (seeds: [GOVERNOR_ID, governor_id.key()]).
« Writable: Yes.

» Constraints: transfer.resource == governor_id.key(),
transfer.current_authority == old_governor.key(),
transfer.new_authority == proposed_governor.key(),andclose =

old_governor.

Additional checks and behavior

» Setsgovernor_id.governor = transfer.new_authority.
* Emits GovernorAuthorityTransferCompleted.
» Closes transfertoold_governor.

CPI

* None beyond Anchor’s close semantics.

Instruction: airspace_create

This instruction creates a new Airspace account (an isolation domain). Only the governor must be
valid; the authority of the airspace is set per input.

Input parameters

» seed: String: Seed string used in the airspace PDA derivation.

* is_restricted: bool: Iftrue, permits are required and must be issued by authorized
regulators.

Zellic © 2025 < Back to Contents Page 47 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

e authority: Pubkey: The initial airspace authority.

Accounts

 payer: Pays rent for new airspace.

« Signer: Yes.

« Init: No.

» PDA: No.
Writable: Yes.

» Constraints: None.

» airspace: The airspace being created.

« Signer: No.

* Init: Yes.

PDA: Yes (seeds: [AIRSPACE, seed.as_ref()]).

Writable: Yes.

» Constraints: space = Airspace: :SIZE and payer = payer.

» governor: The current governor.

« Signer: Yes.

« Init: No.

» PDA: No.

Writable: No.

» Constraints: In nontesting builds, must match governor_id.governor.

» governor_id: Global governor identity.

« Signer: No.

* Init: No.

» PDA: Yes.

» Writable: No.

« Constraints: has_one = governor (nontesting only).
» system_program: The system program.

« Signer: No.

« Init: No.

» PDA: No.

» Writable: No.

» Constraints: Must be the system program.

Additional checks and behavior

e Setsairspace.authority = authorityandairspace.is_restricted =

Zellic © 2025 < Back to Contents Page 48 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

is_restricted.
» Emits AirspaceCreated, including the human-readable seed.

CPI

« Implicit CPI to the system program to create the airspace PDA.

Instruction: airspace_propose_authority

The current airspace authority proposes a new authority. This instruction creates a single pending
transfer record scoped to the airspace.

Input parameters

» proposed_authority: Pubkey: Addressto become the new authority upon finalization.

Accounts

» authority: Current airspace authority.

» Signer: Yes.

« Init: No.

« PDA: No.

« Writable: Yes.

» Constraints: Must equal airspace.authority.
 airspace: Target airspace.

« Signer: No.

* Init: No.

» PDA: Yes.

» Writable: Yes.

» Constraints: has_one = authority.
» transfer: Temporary authority-transfer record.

« Signer: No.

« Init: Yes.

» PDA: Yes (seeds: [AIRSPACE, airspace.key()]).
» Writable: Yes.

» Constraints: space = 8 + size_of::<AuthorityTransfer>() and payer =
authority. Seed choice ensures only one open transfer per airspace.

» system_program: The system program.

Zellic © 2025 < Back to Contents Page 49 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: No.

« PDA: No.

» Writable: No.

 Constraints: Must be the system program.

Additional checks and behavior

» Writes transfer.resource = airspace.key(), transfer.current_authority =
authority.key(),and transfer.new_authority = proposed_authority.
» Emits AirspaceAuthorityTransfer.

CPI

 Implicit CPI to the system program to create the transfer PDA.

Instruction: airspace_finalize_authority

The proposed authority accepts the transfer. The instruction updates the airspace authority and
closes the transfer record.

Input parameters

None.

Accounts

» proposed_authority: The proposed new authority.

« Signer: Yes.

« Init: No.

» PDA: No.

» Writable: No.

» Constraints: Must equal transfer.new_authority.
» old_authority: Receives rent when closing transfer.

« Signer: No.

« Init: No.

« PDA: No.
Writable: Yes.

Zellic © 2025 < Back to Contents Page 50 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» Constraints: Must equal airspace.authority and
transfer.current_authority.

« airspace: Target airspace.

« Signer: No.

« Init: No.

» PDA: Yes.

» Writable: Yes.

» Constraints: airspace.authority == old_authority.key().
» transfer: Pending transfer record.

« Signer: No.

* Init: No.

» PDA: Yes (seeds: [AIRSPACE, airspace.key()]).
« Writable: Yes.

» Constraints: transfer.resource == airspace.key(),
transfer.current_authority == old_authority.key(),
transfer.new_authority == proposed_authority.key(),andclose =

old_authority.

Additional checks and behavior
» Setsairspace.authority = transfer.new_authority.

» Emits AirspaceAuthoritySet.
» Closes transfertoold_authority.

CPI

» None beyond Anchor’s close semantics.

Instruction: airspace_permit_issuer_create

Airspace authority grants a regulator license (AirspacePermitIssuerId) allowing the issuer to
issue permits in this airspace.

Input parameters

» issuer: Pubkey: Address being authorized as a permit issuer (regulator).

Zellic © 2025 < Back to Contents Page 510f 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Accounts

» payer: Pays rent to create the issuer ID account.

 Signer: Yes.

« Init: No.

» PDA: No.
Writable: Yes.

» Constraints: None.

 authority: Airspace authority.

« Signer: Yes.

* Init: No.

» PDA: No.

Writable: No.

» Constraints: Must equal airspace.authority.

» airspace: Target airspace.

« Signer: No.

« Init: No.

» PDA: Yes.

» Writable: No.

» Constraints: has_one = authority.
» issuer_id: The regulator license account.

« Signer: No.

* Init: Yes.

» PDA: Yes (seeds: [AIRSPACE_PERMIT_ISSUER, airspace.key(), issuer]).

« Writable: Yes.

» Constraints: space = AirspacePermitIssuerId::SIZE and payer = payer.
» system_program: The system program.

« Signer: No.

« Init: No.

» PDA: No.

» Writable: No.

» Constraints: Must be the system program.

Additional checks and behavior

e Setsissuer_id.airspace = airspace.key() and issuer_id.issuer = issuer.

e Emits AirspaceIssuerIdCreated.

Zellic © 2025 < Back to Contents Page 52 of 134

4ﬁ Ze"IC Glow Protocol Solana

Application Security Assessment August 13,2025

CPI

» ImplicitC

Pl to the system program to create the issuer_id PDA.

Instruction: airspace_permit_issuer_revoke

Airspace authority revokes a regulator license; the license account is closed and rent is returned to

receiver.

Input parameters

None.

Accounts

e receiver

¢ authorit

e airspace:

: Receives lamports from closing the issuer ID account.

Signer: Yes.

Init: No.

PDA: No.

Writable: Yes.

Constraints: None.
y: Airspace authority.

Signer: Yes.
Init: No.
PDA: No.
Writable: No.

Constraints: None (authority is validated via airspace.has_one =
authority).

Target airspace.

Signer: No.

Init: No.

PDA: Yes.

Writable: No.

Constraints: has_one = authority.

 issuer_id: Regulator license to be revoked.

Signer: No.
Init: No.
PDA: Yes (seeds: [ATIRSPACE_PERMIT_ISSUER, airspace.key(), issuerl]).

Zellic © 2025 < Back to Contents

Page 53 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Writable: Yes.
» Constraints: has_one = airspaceandclose = receiver.
» system_program: The system program.

« Signer: No.

« Init: No.

» PDA: No.

Writable: No.

» Constraints: Must be the system program.

Additional checks and behavior

* Emits AirspaceIssuerIdRevoked { airspace, issuer }.

» Closing sets the account’s data length to 0 (so future lookups can detect revocation by
zero data).

CPI

» None beyond Anchor’s close semantics.

Instruction: airspace_permit_create

This instruction creates a user permit for an airspace. If the airspace is restricted and the caller is
not the airspace authority, the caller must have a valid, nonrevoked issuer license.

Input parameters

« owner: Pubkey: The address receiving the permit.

Accounts

» payer: Pays rent for the new permit.

« Signer: Yes.

« Init: No.

» PDA: No.

» Writable: Yes.

» Constraints: None.

» authority: Caller creating the permit (airspace authority or authorized issuer in
restricted airspaces; anyone in unrestricted airspaces).

Zellic © 2025 < Back to Contents Page 54 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: Yes.
« Init: No.
» PDA: No.
Writable: No.

» Constraints: If airspace.is_restrictedand authority !=
airspace.authority, mustcorrespond to avalid issuer_id PDA below.

» airspace: Target airspace.

« Signer: No.
* Init: No.
» PDA: Yes.
» Writable: No.
» Constraints: None.
« permit: The user permit account to create.

« Signer: No.

« Init: Yes.

» PDA: Yes (seeds: [AIRSPACE_PERMIT, airspace.key(), ownerl).

» Writable: Yes.

» Constraints: space = AirspacePermit::SIZE and payer = payer.
» issuer_id: Issuerlicense PDA corresponding to authority.

« Signer: No.

* Init: No.

» PDA: Yes (seeds: [AIRSPACE_PERMIT_ISSUER, airspace.key(),
authorityl).

» Writable: No.

» Constraints: In restricted airspaces where authority !=
airspace.authority, this account must deserialize as
AirspacePermitIssuerId(nonrevoked). In other cases, itis not used.

» system_program: The system program.

«» Signer: No.

* Init: No.

« PDA: No.

» Writable: No.

« Constraints: Must be the system program.

Additional checks and behavior

o Ifairspace.is_restrictedandauthority != airspace.authority,theinstruction
calls try_deserialize to deserialize issuer_id into AirspacePermitIssuerlId. Failure
indicates missing or revoked license and aborts.

Zellic © 2025 < Back to Contents Page 55 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Sets the following:

permit.airspace = airspace.key()
permit.owner = owner

permit.issuer = (airspace.authority == authority.key()) ?
airspace.key() : authority.key()

* Emits AirspacePermitCreated

CPI

« Implicit CPI to the system program to create the permit PDA.

Instruction: airspace_permit_revoke

This instruction revokes a previously issued permit. It is always allowed by the airspace authority
and by the original issuer. In restricted airspaces, if the issuer license has been revoked (the license
account has zero data), any signer may revoke the permit.

Input parameters

None.

Accounts

* receiver:

Receives lamports from closing the permit.

Signer: Yes.

Init: No.

PDA: No.

Writable: Yes.
Constraints: None.

« authority: Revoker — must be permitted per rules described above.

L]
e airspace

Signer: Yes.

Init: No.

PDA: No.

Writable: No.

Constraints: None — enforced directly and validated in handler logic.
Airspace of the permit.

Signer: No.
Init: No.

Zellic © 2025 < Back to Contents

Page 56 of 134

14 :
\\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025
» PDA:Yes.
» Writable: No.

» Constraints: None.
» issuer_id: Issuer license PDA for permit.issuer.

« Signer: No.
« Init: No.

» PDA: Yes (seeds: [AIRSPACE_PERMIT_ISSUER, airspace.key()
permit.issuer]).

« Writable: No.

» Constraints: May have zero data if previously revoked/closed — address still
required to match seeds.

» permit: The permit to revoke (and close).

« Signer: No.

* Init: No.

» PDA: Yes (seeds: [AIRSPACE_PERMIT, airspace.key(), permit.ownerl]).
» Writable: Yes.

» Constraints: has_one = airspaceandclose = receiver.

Additional checks and behavior

« Computes the following:

e is_airspace_authority = authority == airspace.authority
e is_airspace_permit_issuer = authority == permit.issuer

e is_restricted_issuer_not_revoked = airspace.is_restricted &&
lissuer_id.data_is_empty()

If none of the first two are true and is_restricted_issuer_not_revoked istrue, it
aborts with PermissionDenied. Effectively,

« Airspace authority or the original issuer can always revoke.
« Inunrestricted airspaces, anyone can revoke.

« Inrestricted airspaces where the issuer license has been revoked (the
license data is empty), anyone can revoke.

* Emits AirspacePermitRevoked
» Closespermittoreceiver.

CPI

» None beyond Anchor’s close semantics.

Zellic © 2025 < Back to Contents Page 57 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

5.3. Program: margin-pool

Instruction: create_pool

This instruction creates a new MarginPool for a given token_mint within an airspace plus its vault
token account, fee destination token account, and the Token-2022 note mints. Also, it creates and
populates metadata for the underlying token and position tokens (deposit/loan notes).

Input parameters

None.

Accounts

« authority: Airspace authority authorized to create pools.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must equal airspace.authority.
» airspace: Airspace in which the pool is registered.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

e Constraints: airspace.authority == authority.
« fee_owner: The owner that will control fee withdrawals.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Proves existence and authority over fee destination.
» payer: Pays rent for newly created accounts.

» Signer: Yes.

« Init: No.

« PDA: No.

Mutable: Yes.

« Constraints: Must have sufficient lamports.

» margin_pool: The pool account to create.

Zellic © 2025 < Back to Contents Page 58 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Signer: No.

Init: Yes (created via system_program: :create_account).
PDA:Yes ([airspace, token_mint]).

Mutable: Yes.

Constraints: Space =8 + size_of::<MarginPool>() and owner = program
ID.

» vault: Pool vault token account for token_mint.

Signer: No.

Init: Yes (created in handler).

PDA:Yes ([margin_pool, "vault"l).

Mutable: Yes.

Constraints: Token account for token_mint — authority = margin_pool.

» deposit_note_mint: Token-2022 mint for deposit notes.

Signer: No.

Init: Yes (via Anchor #[account(init)]).

PDA: Yes ([margin_pool, "deposit-notes"]).
Mutable: Yes.

Constraints: Decimals = token_mint.decimals, mint authority =
margin_pool, and token program = pool_token_program.

e loan_note_mint: Token-2022 mint for loan notes.

Signer: No.

Init: Yes (via Anchor #[account (init)]).
PDA:Yes ([margin_pool, "loan-notes"]).
Mutable: Yes.

Constraints: Decimals = token_mint.decimals, mint authority =
margin_pool, and token program = pool_token_program.

» token_mint: Underlying SPL/Token-2022 mint that the pool uses.

Signer: No.
Init: No.
PDA: No.
Mutable: No.

Constraints: Must pass mint-extension validation (no disabled/fee
extensions).

» fee_destination: Token-2022 token account holding collected fees (in deposit notes).

Signer: No.

Init: Yes (created in handler).

PDA:Yes ([margin_pool, fee_owner, "margin-pool-fee-destination"]).
Mutable: Yes.

Constraints: Token account for deposit_note_mint, authority = fee_owner,

Zellic © 2025

< Back to Contents

Page 59 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

and token program = pool_token_program.
» token_metadata: Metadata account for the underlying token.

« Signer: No.

Init: Yes (via CPI to metadata program).

« PDA: No.

Mutable: Yes.

» Constraints: Created/updated via metadata program CPI.

» deposit_note_metadata: Metadata account for deposit notes.

« Signer: No.

« Init: Yes (via CPI).

» PDA: No.

« Mutable: Yes.

« Constraints: Created/updated via metadata program CPI.
» loan_note_metadata: Metadata account for loan notes.

« Signer: No.

« Init: Yes (via CPI).

» PDA: No.

* Mutable: Yes.

» Constraints: Created/updated via metadata program CPI.

* mint_token_program: Token program for the underlying mint (spl-token or
Token-2022).

» Signer: No.
« Init: No.

« PDA: No.

« Mutable: No.

* pool_token_program: Token-2022 program used by note mints and note token
accounts.

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
» metadata_program: Metadata program for on-chain metadata entries.

« Signer: No.
* Init: No.
» PDA: No.
« Mutable: No.
« system_program: The system program for account creation.

« Signer: No.

Zellic © 2025 < Back to Contents Page 60 of 134

N
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025
¢ Init: No.
« PDA: No.
« Mutable: No.

Additional checks and behavior

» Validates token_mint extensions, disallows certain Token-2022 extensions and nonzero
transfer fees, and errors with TokenExtensionNotEnabled if invalid.

» Creates vault and fee_destination token accounts and initializes them with
InitializeAccount3.

» Creates and initializes margin_pool; sets version, addresses, mints, fee destination, and
timestamps; and writes discriminator and serialized data.

« Initializes and sets metadata for deposit/loan position tokens and the underlying token.
Emits PoolCreated and metadata configured events.

CPI

» system_program: :create_account for pool account and token accounts.
e token_interface::initialize_account3forvaultand fee_destination.

* glow_metadata::cpi::{create_entry,set_entry} to create and populate metadata
accounts.

Instruction: collect

This instruction accrues interest up to a bounded window and mints deposit-note fees to the pool's
fee_destination.

Input parameters

None.

Accounts

» margin_pool: Pool to collect fees from.

« Signer: No.

* Init: No.

» PDA: No.

* Mutable: Yes.

« Constraints: has_one = vault,has_one = deposit_note_mint,and
has_one = fee_destination.

Zellic © 2025

< Back to Contents Page 610f 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* vault: Pool's underlying token vault.

« Signer: No.
* Init: No.
« PDA: No.

» Mutable: Yes (read for balances, SPL state mutated when minting elsewhere,
and kept mutable by constraint).

» Constraints: Token account for underlying mint — authority =margin_pool.
» fee_destination: Deposit-note token account receiving minted fee notes.

« Signer: No.
* Init: No.
» PDA: No.
« Mutable: Yes.
* deposit_note_mint: Deposit-note mint.

« Signer: No.
« Init: No.
» PDA: No.
e Mutable: Yes.
» token_program: Token interface (Token-2022 for note mint).

« Signer: No.
* Init: No.

» PDA: No.

» Mutable: No.

Additional checks and behavior

» Accrues interest up to MAX_ACCRUAL_SECONDS — if the clock drift exceeds the cap and
accrual could not fully catch up, logs and exits early.

» Callscollect_accrued_fees() to compute notes to mint and updates pool-fee
accounting.

» Mints fee notes to fee_destination and emits Collect, including postcollection
balances.

CPI

* token_interface::mint_to to mintdeposit notesto fee_destination.

Zellic © 2025 < Back to Contents Page 62 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: configure

This instruction updates pool configuration, oracle settings, and/or token metadata for
deposit/loan notes.

Input parameters

» metadata: Option<TokenMetadataParams>: Struct of token metadata fields to apply to
deposit and loan position tokens.

* token_kind: TokenKind

e collateral_weight: ul6

e max_leverage: ul6

* max_staleness: u64

« token_features: ul6 (bitflags validated for compatibility)

e config: Option<MarginPoolConfig>: New pool config — monotonicity of
utilization/borrow rate steps and fee caps are enforced.

e oracle: Option<TokenPriceOracle>: New oracle configuration (keptin sync with
token metadata).

Accounts

« payer: Pays any CPl metadata writes.

« Signer: Yes.

* Init: No.

« PDA: No.

Mutable: Yes.
 authority: Pool/airspace authority.

» Signer: Yes.
* Init: No.
« PDA: No.
« Mutable: No.
« airspace: Airspace the pool belongs to.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: airspace.authority == authority.
» margin_pool: Pool to configure.

« Signer: No.

Zellic © 2025 < Back to Contents Page 63 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

 |nit: No.
« PDA: No.
Mutable: Yes.

Constraints: has_one = token_mintandmargin_pool.airspace ==
airspace.

» token_mint: Underlying token mint.

« Signer: No.
* Init: No.
» PDA: No.
» Mutable: No.
» token_metadata: Existing metadata for the underlying token.

« Signer: No.

« Init: No.

» PDA: No.

« Mutable: Yes.

» Constraints: has_one = token_mintand has_one = airspace.
» deposit_metadata: Metadata for deposit notes.

« Signer: No.

« |nit: No.

» PDA: No.

» Mutable: Yes.

« Constraints: has_one = airspace,underlying_token_mint ==
token_mint,and position_token_mint ==
margin_pool.deposit_note_mint == deposit_note_mint.

» loan_metadata: Metadata for loan notes.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: Yes.

» Constraints: has_one = airspace,underlying_token_mint ==
token_mint,and position_token_mint == margin_pool.loan_note_mint
== loan_note_mint.

» deposit_note_mint: Key used for deposit-metadata entry indexing.

« Signer: No.
« Init: No.
« PDA: No.
» Mutable: No.
* loan_note_mint: Key used for loan-metadata entry indexing.

Zellic © 2025 < Back to Contents Page 64 of 134

% i
\\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025
« Signer: No.
¢ Init: No.
« PDA: No.
» Mutable: No.

» metadata_programand system_program: Programs for metadata and system ops.

« Signer: No.
* Init: No.

» PDA: No.

« Mutable: No.

Additional checks and behavior

» If configis present, enforces

e utilization_rate_1 < utilization_rate_2,
* borrow_rate_0 < borrow_rate_1 < borrow_rate_2 < borrow_rate_3,and
e management_fee_rate <= MAX_MANAGEMENT_FEE_RATE.

 Iforacleis present, sets pool.token_price_oracle, updates token_metadata,and
emits TokenMetadataConfigured.

» Emits PoolConfigured with provided or default values.

 Ifmetadatais present, validates max_staleness <= MAX_TOKEN_STALENESS and
token_features compatibility, writes both deposit and loan position metadata, and
emits PositionTokenMetadataConfigured events.

CPI

» glow_metadata::cpi::set_entry for token and position metadata updates.

Instruction: deposit
This instruction deposits underlying tokens into the pool and mints deposit notes to the destination.
Input parameters

» change_kind: ChangeKind: How to interpret amount (set/shift semantics).
» amount: u64: Tokens to apply under change_kind.

Accounts

» margin_pool: Target pool.

Zellic © 2025 < Back to Contents Page 65 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: No.

» PDA: No.

Mutable: Yes.

» Constraints: has_one = vaultandhas_one = deposit_note_mint.

vault: Pool vault for underlying tokens.

« Signer: No.
* Init: No.
» PDA:Yes([margin_pool, "vault"]).
« Mutable: Yes.
» deposit_note_mint: Deposit-note mint (Token-2022).

« Signer: No.
« Init: No.
» PDA:Yes([margin_pool, "deposit-notes"]).
* Mutable: Yes.
» depositor: Authority moving tokens.

» Signer: Yes.
* Init: No.
« PDA: No.
« Mutable: No.
« source: User token account of source_mint.

« Signer: No.

« Init: No.

« PDA: No.

* Mutable: Yes.

» Constraints: Mint = source_mint, authority = depositor, and token program
=mint_token_program.

» source_mint: Underlying token mint.

« Signer: No.
* Init: No.
« PDA: No.
« Mutable: No.
» destination: Token accountto receive deposit notes.

« Signer: No.

« Init: No.

« PDA: No.

¢ Mutable: Yes.

 Constraints: Mint = deposit_note_mint and token program =

Zellic © 2025 < Back to Contents Page 66 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

pool_token_program.

* mint_token_programand pool_token_program: Token interfaces for underlying and
notes.

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
» deposit_metadata: Position token configuration for restrictions.

« Signer: No.
* Init: No.
» PDA: No.
* Mutable: No.
» Constraints: position_token_mint == deposit_note_mint.
* optional_margin_account: Required if token features include RESTRICTED.

« Signer: No.
« Init: No.

« PDA: No.

» Mutable: No.

Additional checks and behavior

« Accrues interest and fails with InterestAccrualBehind if too far behind.
If RESTRICTED,

* requires optional_margin_account present, and

» validates margin_account.owner == depositor,
margin_account.airspace == pool.airspace,destination.owner ==
margin_account, and token-feature compatibility with the margin account.

» Computes deposit amounts using exchange rate and change_kind, enforces deposit
limit, updates pool accounting, transfers underlying to vault, and mints notes to
destination.

* Emits Deposit.

CPI

» token_interface::transfer_checked from sourceto vault.
e token_interface::mint_totodestination.

Zellic © 2025 < Back to Contents Page 67 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: withdraw

This instruction burns deposit notes and transfers underlying tokens from the pool vault to the
destination.

Input parameters

e change_kind: ChangeKind

e amount: u64

Accounts

« depositor: Authority burning deposit notes or margin-account signer.

« Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» margin_pool: Pool to withdraw from.

« Signer: No.

* Init: No.

» PDA: No.

e Mutable: Yes.

« Constraints: has_one = vaultandhas_one = deposit_note_mint.
 vault: Pool vault token account.

« Signer: No.
« Init: No.
» PDA: Yes.
* Mutable: Yes.
» deposit_note_mint: Deposit-note mint.

« Signer: No.
* Init: No.
» PDA: Yes.
e Mutable: Yes.
» source: User's deposit-note token account.

« Signer: No.

« Init: No.

« PDA: No.

* Mutable: Yes.

Zellic © 2025 < Back to Contents Page 68 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Constraints: Must be owned by the burning authority — validated by the
token program.

» destination: Token account to receive underlying tokens.

« Signer: No.

¢ Init: No.

« PDA: No.

» Mutable: Yes.

» Constraints: Mint = token_mint and token program =mint_token_program.
 token_mint: Underlying mint.

« Signer: No.
* Init: No.

« PDA: No.

« Mutable: No.

* mint_token_programand pool_token_program: Token interfaces (underlying and
notes).

« Signer: No.
« Init: No.

» PDA: No.
Mutable: No.

Additional checks and behavior

» Validates the allowed destination.owner. If depositorisaMarginAccount,
destination.owner must be that margin account or its owner. Otherwise,
destination.owner mustbe depositor.

« Accrues interest and fails if too far behind.

« Converts/bounds withdraw amounts, updates pool, transfers underlying from vault,
and burns deposit notes from source.

e EmitsWithdraw.

CPI

« token_interface::transfer_checked from vault to destination (signed by pool
PDA).

» token_interface: :burnon source (authority = depositor).

Zellic © 2025 < Back to Contents Page 69 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: margin_borrow

This instruction borrows underlying via the pool and immediately deposits it back to receive
deposit notes to the margin account’s note account. It effectively internalizes the borrowed tokens
as deposit notes.

Input parameters

e change_kind: ChangeKind

e amount: u64

Accounts

» margin_account: Margin account being executed on.

» Signer: Yes.
* Init: No.
« PDA: No.
« Mutable: No.
* margin_pool: Pool to borrow from and deposit into.

« Signer: No.

« Init: No.

« PDA: No.

* Mutable: Yes.

» Constraints: has_one = loan_note_mint and has_one =
deposit_note_mint.

* loan_note_mint: Loan-note mint (Token-2022).

« Signer: No.

* Init: No.

» PDA: Yes.

« Mutable: Yes.

» Constraints: Token program = pool_token_program.
» deposit_note_mint: Deposit-note mint (Token-2022).

« Signer: No.

« Init: No.

» PDA: Yes.

Mutable: Yes.

» Constraints: Token program = pool_token_program.

» loan_account: Loan-note token account, owned by the pool.

« Signer: No.

Zellic © 2025 < Back to Contents Page 70 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

¢ Init: No.
» PDA:Yes([margin_account, loan_note_mint]).
¢ Mutable: Yes.
» Constraints: owner == margin_pool.
» deposit_account: Deposit-note token account owned by the margin account.

« Signer: No.

* Init: No.

» PDA: No.

« Mutable: Yes.

» Constraints: owner == margin_account.

* pool_token_program: Token-2022 interface.

« Signer: No.
« Init: No.

« PDA: No.

» Mutable: No.

Additional checks and behavior
» Accrues interest and computes borrow_amount from change_kind.

» Enforces lending enabled, utilization, and borrow limits and updates pool
borrowed/deposit accounting.

» Mints loan notes to loan_account and mints deposit notes to deposit_account.
» Notifies margin program of a token balance change (Borrow) and emits MarginBorrow.

CPI

» token_interface::mint_toto loan_account and deposit_account.

Instruction: margin_borrow_v2

This instruction borrows underlying via the pool and transfers the underlying tokens directly to a
destination token account (no immediate deposit).

Input parameters

e amount: u64

Zellic © 2025 < Back to Contents Page 710f 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Accounts

* margin_account: Margin account being executed on.

 Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
* margin_pool: Pool to borrow from.

« Signer: No.

« Init: No.

« PDA: No.

* Mutable: Yes.

» Constraints: has_one = vaultandhas_one = loan_note_mint.
 vault: Pool vault for underlying tokens.

« Signer: No.

« Init: No.

» PDA: Yes.

Mutable: Yes.

» loan_note_mint: Loan-note mint.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: Yes.
» token_mint: Underlying mint (for decimals).

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
» loan_account: Loan-note account owned by the pool for this margin account.

« Signer: No.
* Init: No.
» PDA:Yes([margin_account, loan_note_mint]).
* Mutable: Yes.
» Constraints: owner == margin_pool.
» destination: Token accountreceiving the borrowed underlying.

« Signer: No.
« Init: No.

Zellic © 2025 < Back to Contents Page 72 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» PDA: No.
* Mutable: Yes.
« mint_token_program: Token interface for underlying.

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
* pool_token_program: Token-2022 program for note minting.

« Signer: No.
« Init: No.

« PDA: No.

« Mutable: No.

Additional checks and behavior
» Accrues interest and computes loan borrow_amount.

» Updates pool accounting, mints loan notes to 1oan_account, and transfers underlying
from vaulttodestination.

« Notifies margin program of Borrow and emits MarginBorrow (with deposit_notes = 0).

CPI

e token_interface::mint_toto loan_account.

» token_interface::transfer_checkedfrom vaulttodestination (signed by pool
PDA).

Instruction: margin_repay

This instruction repays a margin loan using deposit notes held by the margin account. It burns loan
notes and burns deposit notes corresponding to the withdrawn underlying used for repayment.

Input parameters

e change_kind: ChangeKind

e amount: u64

Accounts

» margin_account: Margin account being executed on.

Zellic © 2025 < Back to Contents Page 73 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» margin_pool: Pool with the outstanding loan.

« Signer: No.

* Init: No.

» PDA: No.

« Mutable: Yes.

« Constraints: has_one = deposit_note_mintandhas_one =
loan_note_mint.

* loan_note_mint: Loan-note mint.

« Signer: No.
¢ Init: No.
« PDA: Yes.
» Mutable: Yes.
» deposit_note_mint: Deposit-note mint.

« Signer: No.
« Init: No.
» PDA: Yes.
* Mutable: Yes.
» loan_account: Loan-note token account.

« Signer: No.
« Init: No.
» PDA: No.
« Mutable: Yes.
» deposit_account: Deposit-note token account owned by the margin account.

« Signer: No.
* Init: No.
» PDA: No.
* Mutable: Yes.
» pool_token_program: Token interface for note burns (Token-2022).

« Signer: No.
« Init: No.

» PDA: No.
Mutable: No.

Zellic © 2025 < Back to Contents Page 74 of 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Additional checks and behavior

» Accrues interest, computes repay_amount from deposit notes and outstanding loan,
and computes withdraw_amount of deposit notes needed to cover token repayment.

» Updates pool viamargin_repay () (burnsloan/deposit notes accounting and reduces
borrowed principal).

» Burnsloan notes (authority = pool PDA) and burns deposit notes (authority =
margin_account).

» Notifies margin program of Repay and emits MarginRepay.

CPI

» token_interface::burnon loan_account (signed by pool PDA).

» token_interface::burnondeposit_account (authority =margin_account).

Instruction: repay

This instruction repays a margin loan using external underlying tokens. It transfers underlying into
the vault and burns the corresponding loan notes.

Input parameters

* change_kind: ChangeKind

e amount: u64

Accounts

» margin_pool: Pool with the outstanding loan.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: Yes.

» Constraints: has_one = loan_note_mint and has_one = vault.
* loan_note_mint: Loan-note mint.

« Signer: No.
« Init: No.
» PDA: Yes.
* Mutable: Yes.
» token_mint: Underlying mint (for decimals).

Zellic © 2025 < Back to Contents Page 75 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.
« Init: No.
« PDA: No.
» Mutable: No.
« vault: Pool vault for underlying.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: Yes.
» loan_account: Borrower’s loan-note token account.

« Signer: No.

« Init: No.

« PDA: No.

Mutable: Yes.

» repayment_token_account: Token account holding underlying to repay.

« Signer: No.
* Init: No.
» PDA: No.
* Mutable: Yes.
e repayment_account_authority: Authority over repayment_token_account.

« Signer: Yes.
« Init: No.

« PDA: No.

» Mutable: No.

* mint_token_programand pool_token_program: Token interfaces for underlying and
notes.

« Signer: No.
« Init: No.

» PDA: No.
Mutable: No.

Additional checks and behavior

» Accrues interest and computes the repay amounts from available tokens and
outstanding notes.

» Updates pool accounting, transfers tokens into vault, and burns loan notes (signed by
pool PDA).

» Returns serialized AdapterResult via Solana return data indicating a Repay token

Zellic © 2025 < Back to Contents Page 76 of 134

Glow Protocol Solana Application Security Assessment

balance change and emits Repay.

CPI

» token_interface::transfer_checked from repayment_token_account to vault.

« token_interface: :burnon loan_account (signed by pool PDA).

Instruction: withdraw_fees

This instruction converts fee notes held in the pool's fee_destination into underlying tokens and

withdraws them to a fee owner’s token account, burning the fee notes.

Input parameters

None.

Accounts

» fee_owner: Fee owner withdrawing fees.

» Signer: Yes.
« Init: No.

» PDA: No.

« Mutable: No.

* margin_pool: Pool to withdraw fees from.

« Signer: No.
« Init: No.

» PDA: No.

» Mutable: No.

« Constraints: has_one = vault,has_one = deposit_note_mint,and
has_one = fee_destination.

» vault: Pool vault holding underlying tokens.

« Signer: No.

« Init: No.

« PDA: Yes.

« Mutable: Yes.

» fee_destination: Fee-note token account owned by fee_owner.

« Signer: No.
* Init: No.

Zellic © 2025

< Back to Contents

Page 77 of 134

August 13,2025

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* PDA: Yes.
* Mutable: Yes.

» Constraints: Mint = deposit_note_mint, authority = fee_owner, and token
program = pool_token_program.

» fee_withdrawal_destination: Recipient token account for withdrawn underlying.

« Signer: No.

« Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: Mint = token_mint, authority = fee_owner, and token program =
mint_token_program.

» token_mint: Underlying mint.

« Signer: No.
* Init: No.
« PDA: No.
« Mutable: No.
» deposit_note_mint: Deposit-note mint.

« Signer: No.

« Init: No.

« PDA: Yes.

* Mutable: Yes.

* mint_token_programand pool_token_program: Token interfaces for underlying and
notes.

« Signer: No.
* Init: No.

» PDA: No.
Mutable: No.

Additional checks and behavior

» Converts all fee notesin fee_destination to underlying at the current exchange rate.

» Transfers underlying from vault to fee_withdrawal_destination (signed by pool PDA)
and burns the fee notes from fee_destination (authority = fee_owner).

* Emits FeesWithdrawn.

CPI

e token_interface::transfer_checked fromvaultto fee_withdrawal_destination.

e token_interface::burnon fee_destination.

Zellic © 2025 < Back to Contents Page 78 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: register_loan

This instruction creates the PDA loan-note token account for a margin account and requests the
margin program to register the position.

Input parameters

None.

Accounts

e margin_account: Margin account authority.

« Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» loan_token_config: Auxiliary config account required by margin (opaque here).

« Signer: No.
« Init: No.
« PDA: No.
* Mutable: No.
loan_note_account: PDA token account to store loan notes.

« Signer: No.

« Init: Yes (via Anchor).

* PDA:Yes([margin_account, loan_note_mint]).
e Mutable: Yes.

» Constraints: Mint = loan_note_mint, authority =margin_pool, and token
program = token_program.

* loan_note_mint: Loan-note mint.

« Signer: No.
« Init: No.
» PDA: Yes.
» Mutable: No.
» margin_pool: Pool that issues the loan notes.

« Signer: No.
« Init: No.

» PDA: No.
Mutable: No.

Zellic © 2025 < Back to Contents Page 79 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» Constraints: has_one = loan_note_mint.
» payer: Rent payer for the created token account.

« Signer: Yes.
« Init: No.
» PDA: No.
* Mutable: Yes.
» token_program: Token-2022 program.

« Signer: No.
* Init: No.
« PDA: No.
« Mutable: No.
« system_programand rent: The system and rent sysvar.

« Signer: No.
« Init: No.

« PDA: No.

» Mutable: No.

Additional checks and behavior

« After creating the loan-note token account, writes an adapter result requesting
PositionChange: :Register so the margin program can register the position.

CPI
« Anchor initializes the token account via Token-2022.

* glow_margin::write_adapter_result to notify margin program (via account
data/return data semantics).

Instruction: close_loan

This instruction loses a previously created loan-note token account for a margin position and
informs the margin program that the position is closed.

Input parameters

None.

Zellic © 2025 < Back to Contents Page 80 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Accounts

* margin_account: Margin account being executed on.

 Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» loan_note_account: PDA token account holding loan notes to be closed.

« Signer: No.
« Init: No.
» PDA:Yes([margin_account, loan_note_mint]).
* Mutable: Yes.
* loan_note_mint: Loan-note mint.

« Signer: No.
« Init: No.
» PDA: Yes.
« Mutable: No.
« margin_pool: Pool that owns the loan-note account authority.

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
» Constraints: has_one = loan_note_mint.
» beneficiary: Recipient of reclaimed rent from closing the token account.

« Signer: Yes.
« Init: No.
» PDA: No.
¢ Mutable: Yes.
» token_program: Token-2022 program.

« Signer: No.
* Init: No.

» PDA: No.

» Mutable: No.

Additional checks and behavior

» Closes the loan-note token account with authority margin_pool (signed by pool PDA)
and sends lamports to beneficiary.

Zellic © 2025 < Back to Contents Page 810f 134

Glow Protocol Solana Application Security Assessment August 13,2025

* Notifies margin program of PositionChange: :Close.

CPI

* token_interface::close_accountonloan_note_account.

* glow_margin::write_adapter_result to notify margin program.

Instruction: admin_transfer_loan

This instruction has an administrative function; it moves loan notes between two pool-controlled
loan-note token accounts.

Input parameters

e amount: u64

Accounts

» authority: Protocol governor.

» Signer: Yes.

« Init: No.

» PDA: No.

« Mutable: No.

» Constraints: Must equal PROTOCOL_GOVERNOR_ID.
* margin_pool: Pool owning the loan-note accounts.

« Signer: No.
* Init: No.
« PDA: No.
» Mutable: No.
» source_loan_account: Source loan-note token account.

« Signer: No.
« Init: No.
» PDA: No.
¢ Mutable: Yes.
» Constraints: Authority =margin_pool.
» target_loan_account: Target loan-note token account.

« Signer: No.
* Init: No.

Zellic © 2025

< Back to Contents Page 82 of 134

Il
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« PDA: No.

e Mutable: Yes.

» Constraints: Authority =margin_pool.
» loan_note_mint: Loan-note mint (for decimals).

« Signer: No.
« Init: No.
» PDA: Yes.
» Mutable: No.
» pool_token_program: Token-2022 interface.

« Signer: No.
« Init: No.

» PDA: No.
Mutable: No.

Additional checks and behavior

 Transfers amount of loan notes between accounts using margin_pool signer PDA and
emits LoanTransferred.

CPI

» token_interface::transfer_checked from source to target (signed by pool PDA).

Instruction: margin_refresh_position

This instruction fetches price data from Pyth Pull Receiver accounts and reports deposit/loan note
prices back to the margin program for the position.

Input parameters

None.

Accounts

» margin_account: Margin account whose position is being refreshed.

« Signer: No.
« Init: No.
» PDA: No.

Zellic © 2025 < Back to Contents Page 83 0f 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* Mutable: No.
* margin_pool: Pool whose pricing is being refreshed.

« Signer: No.
« Init: No.

» PDA: No.

» Mutable: No.

» price_oracle: Pyth Pull Receiver price update account for the pool token or
redemption rate feed.

« Signer: No.
* Init: No.

» PDA: No.

« Mutable: No.

» Constraints: Owner must be the Pyth Pull Receiver program (or test program
on devnet).

» redemption_quote_oracle: Optional Pyth Pull Receiver price update for the quote
token when using redemption rates.

« Signer: No.
* Init: No.

« PDA: No.

« Mutable: No.

» Constraints: Required when pool oracle is PythPullRedemption — owner
must be Pyth Pull Receiver (or test program).

Additional checks and behavior

 Verifies oracle account owners to prevent spoofed oracle accounts.
» Deserializes PriceUpdateV2 from provided accounts.

« Ifthe pool uses PythPullRedemption, also consumes the quote oracle and composes
the price and confidence in quote terms.

» Computes deposit/loan note prices, confidence, and TWAP using current exchange
rates — and publishes via adapter result to the margin program for both note mints.

CPI

» glow_margin::write_adapter_resultto passPositionChange: :Price info (two
entries: deposit and loan notes).

Zellic © 2025 < Back to Contents Page 84 of 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

5.4. Program: margin

Instruction: create_account

This instruction creates a new margin account for a user within a specific airspace. The account is
initialized with owner permissions and feature flags that control certain behaviors.

Input parameters

» The seed parameter allows users to create multiple margin accounts by using different
seed values.

» The features parameter is converted to AccountFeatureFlags and controls account
restrictions and behaviors.

seed: ul6
features: ul6

Accounts

 owner: The owner of the new margin account.

« Signer: Yes.

* Init: No.

« PDA: No.

» Mutable: No.

» Constraints: Must be the owner referenced in the permit account.

» permit: Permission account that enables the user to access resources within an
airspace.

« Signer: No.
* Init: No.

» PDA: Yes.

« Mutable: No.

» Constraints: Must have owner as its owner field via has_one = owner
constraint.

» payer: Account that pays for the rent of the new margin account.

 Signer: Yes.

« Init: No.

» PDA: No.

Mutable: Yes.

» Constraints: Must have sufficient funds to pay for account creation.

Zellic © 2025 < Back to Contents Page 85 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* margin_account: The margin account being initialized.

« Signer: No.

« Init: Yes.

» PDA: Yes (seeds: [owner.key, permit.airspace, seed.to_le_bytes()]).
¢ Mutable: Yes.

« Constraints: Cannot be reinitialized once created. Space allocated is 8 +
std::mem::size_of::<MarginAccount>().

» system_program: Solana system program for account creation.

« Signer: No.

* Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

« Validates that feature flags do not contain unknown bits.
* Prevents setting the VIOLATION flag during account creation.
» Ensures at most one feature flag bit is set (excluding combinations).

« The margin accountis initialized with the airspace from the permit, owner key, seed,
bump, and feature flags.

» Uses PDA derivation to ensure deterministic account addresses while allowing multiple
accounts per user.

* Emits AccountCreated event on success.

CPI

« Calls the system program to create and initialize the margin account.

Instruction: close_account

This instruction closes a margin account and returns the rent to a receiver account. The account
can only be closed if it has no open positions remaining.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Zellic © 2025 < Back to Contents Page 86 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Accounts

» owner: The owner of the account being closed.

 Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» Constraints: Must be the owner of the margin account.
» receiver: Account that receives the returned rent from the closed margin account.

« Signer: No.
* Init: No.
» PDA: No.
« Mutable: Yes.
» Constraints: No.
* margin_account: The margin account being closed.

« Signer: No.

« Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must have owner as its owner.

Additional checks and behavior

« Verifies that the margin account has no open positions by checking
account.positions().count() > O.

» Returns AccountNotEmpty error if any positions remain.

» The account closure and rent transfer is handled automatically by Anchor's close
constraint.

» Emits AccountClosed event upon successful closure.

CPI

No external CPI calls are made. Account closure is handled by the Anchor framework.

Instruction: register_position

This instruction registers a new position (token account) under the margin account's control for
adapter-administered tokens. It creates a token account to hold the adapter-provided tokens,
which represent a user's deposit with that adapter.

Zellic © 2025 < Back to Contents Page 87 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

* authority: The authority that can change the margin account.

« Signer: Yes.

« Init: No.

« PDA: No.

» Mutable: No.

» Constraints: Must be the verified authority for the margin account.
» payer: Account paying for rent costs.

« Signer: Yes.

* Init: No.

» PDA: No.

« Mutable: Yes.

» Constraints: Must have sufficient funds for token-account creation.
» margin_account: The margin account to register the position with.

« Signer: No.

« Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must have the same airspace as the token config.
» position_token_mint: The mint for the position token being registered.

« Signer: No.

« Init: No.

» PDA: No.

« Mutable: No.

« Constraints: Must match the config's mint.
» config: The margin config for the token.

« Signer: No.
* Init: No.

» PDA: Yes.

» Mutable: No.

» Constraints: Must be a valid token-configuration account for the airspace
and mint.

» token_account: The token account to hold position assets in custody of the margin

Zellic © 2025

< Back to Contents Page 88 0f 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

account.

« Signer: No.

* Init: Yes.

» PDA: Yes (seeds: [margin_account.key, position_token_mint.key]).
» Mutable: Yes.

» Constraints: Authority is set to the margin account, and the mint matches the
position token mint.

» token_program: The SPL Token Program.

« Signer: No.

* Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must be a token program.
* rent: Therent sysvar.

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
» Constraints: Must be the rent sysvar.
» system_program: The system program for account creation.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must be the system program.

Additional checks and behavior

« Validates that the position does not already exist via
account.has_position(&position_token.key()).

» Returns PositionAlreadyExists error if position is already registered.

« Checks that the config has an adapter program via
config.adapter_program().ok_or_else().

» Creates a PositionConfigUpdate from the token config with the adapter program.
» Registers position with [Approver: :MarginAccountAuthority] approval.

» May fail if the account has reached a maximum number of positions
(MAX_USER_POSITIONS = 24).

Zellic © 2025 < Back to Contents Page 89 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

CPI

» Calls the SPL Token Program to create the token account.

Instruction: update_position_balance

This instruction manually updates the recorded balance of a specific position within a margin
account to match the actual balance stored by the SPL Token Account. This is useful when tokens
are deposited directly without invoking the margin program.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

* margin_account: The margin account to update.

« Signer: No.

« Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must contain a registered position for the provided token
account.

» token_account: The token account to update the balance for.

« Signer: No.

« Init: No.

» PDA: No (can be any token account).
* Mutable: No.

« Constraints: Must be a valid token account, and its mint and key must match
aregistered position.

Additional checks and behavior

» Permissionless instruction.

Updates the position balance in the margin account to match the current token account
balance.

 Uses the current unix timestamp from the syscall for balance-update timing.

» The set_position_balance function internally validates that the position exists for the
given mint and token account key.

Zellic © 2025 < Back to Contents Page 90 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« If the position does not exist in the margin account, the function will fail.

CPI

No external CPI calls are made. This instruction only reads token account data and updates internal
margin account state.

Instruction: adapter_invoke

This instruction allows the margin-account owner to execute instructions on external adapter
programs, providing the margin account as a signer to grant authority over tokens held by the
margin account.

Input parameters

The instructions parameter contains a list of instruction data structures that will be executed on
adapter programs with the margin account as a signer.

instructions: Vec<IxData>

Accounts

» owner: The authority that owns the margin account.

» Signer: Yes.

* Init: No.

» PDA: No.

» Mutable: No.

« Constraints: Must be the owner of the margin account.
* margin_account: The margin account to proxy actions for.

« Signer: No.

« Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must have owner as its owner and must not be undergoing
liquidation.
» Remaining accounts: Variable number of accounts passed to adapter programs.

«» Signer: Varies.

Zellic © 2025 < Back to Contents Page 910f134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Init: Varies.

« PDA: Varies.
Mutable: Varies.
Constraints: No.

Additional checks and behavior

CPI

» Prevents execution if the margin account is being liquidated (1iquidator !=

Pubkey: :default()).

* Emits AdapterInvokeBegin and AdapterInvokeEnd events to markinvocation

boundaries.

 Calls adapter::invoke_many () with the margin account as signer (true parameter).
 Performs health check via valuation().verify_healthy() after adapter execution.
 Validates position feature violations via assert_position_feature_violation().

» The adapter validation is performed within invoke_many () using adapter metadata

accounts.

» Makes CPI calls to validated adapter programs specified in the instructions.
» Adapter programs receive the margin account as a signer, granting them authority over

margin account tokens.

» Each adapter program must have corresponding metadata configuration to be

considered valid.

Instruction: close_position

This instruction closes out a position from a margin account, removing it from the account and
optionally closing the associated token account. This instruction is used when a user no longer
wants to maintain a specific position and needs to free up position slots for new positions.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» authority: The authority that can change the margin account.

» Signer: Yes.
* Init: No.

Zellic © 2025 < Back to Contents Page 92 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« PDA: No.

« Mutable: No.

« Constraints: Must be the verified authority for the margin account.
» receiver: The receiver for the rent released from the closed token account.

« Signer: No.
« Init: No.
» PDA: No.
* Mutable: Yes.
» Constraints: No.
e margin_account: The margin account with the position to close.

« Signer: No.
« Init: No.
» PDA: Yes.
* Mutable: Yes.
» Constraints: Must have authority as its authority.
» position_token_mint: The mint for the position token being deregistered.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must match the mint of the position being closed.
» token_account: The token account for the position being closed.

« Signer: No.

« Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: Must have a mint matching the position_token_mint and be
associated with the correct token program.

» token_program: The SPL Token Program interface.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must be a token program.

Additional checks and behavior

« Verifies the authority has permission to modify the margin account via

Zellic © 2025 < Back to Contents Page 93 of 134

1% :
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

account.verify_authority().

e Callsaccount.unregister_position() with Approver::MarginAccountAuthority to
remove the position from the margin account.

» The position must have zero balance to be closed (checked in unregister_position).

« If the token account is owned by the margin account, it closes the token account via CPI
to the token program.

» The margin account acts as the authority for closing its own token accounts using its
signer seeds.

» Rent from the closed token account is transferred to the specified receiver.

CPI

+ Calls token_2022::close_account if the token account is owned by the margin account.
» Uses the margin account's signer seeds to authorize the token-account closure.

Instruction: verify_healthy

This instruction verifies that a margin account is healthy by validating that the collateralization ratio
is above the minimum required threshold.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

« margin_account: The account to verify the health of.

« Signer: No.

* Init: No.

» PDA: Yes.

* Mutable: No.

» Constraints: Must be an initialized margin account.

Additional checks and behavior

» Loads the margin-account data.

 Calculates the account valuation using the current timestamp from
sys().unix_timestamp().

» Callsvaluation.verify_healthy (), which checks if the account meets minimum
collateral requirements.

Zellic © 2025 < Back to Contents Page 94 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« EmitsaVerifiedHealthy event upon successful verification.
« If the account is unhealthy, the instruction will fail with an appropriate error.
» The health check considers all positions, their values, and collateral requirements.

CPI

No external CPI calls are made.

Instruction: verify_unhealthy

This instruction verifies that a margin account is unhealthy by validating that the collateralization
ratio is below the minimum required threshold.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» margin_account: The account to verify the health of.

« Signer: No.

« Init: No.

« PDA: Yes.

Mutable: No.

» Constraints: Must be an initialized margin account.

Additional checks and behavior

» Loads the margin-account data.

« Calculates the account valuation using the current timestamp from
sys().unix_timestamp().

» Callsvaluation.verify_unhealthy(), which checks if the account fails to meet
minimum collateralization requirements.

» EmitsaVerifiedUnhealthy event upon successful verification of unhealthy status.
« Ifthe account is actually healthy, the instruction will fail with an appropriate error.
» The health check considers all positions, their values, and collateral requirements.

Zellic © 2025 < Back to Contents Page 95 of 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

CPI

No external CPI calls are made. This is a read-only verification instruction.

Instruction: accounting_invoke

This instruction performs actions by invoking other programs for the purpose of refreshing the
state of a margin account to be consistent with actual underlying prices or positions. Unlike
adapter_invoke, this instruction does not provide the margin account as a signer, preventing
adapters from modifying token balances and restricting them to read-only operations for
accounting updates.

Input parameters

The instructions parameter contains the instruction data that will be passed to the invoked
adapter programs for execution.

instructions: Vec<IxData>

Accounts

« margin_account: The margin account to proxy an action for.

« Signer: No.
« Init: No.
» PDA: Yes.
* Mutable: Yes.
» Constraints: No.
+ Remaining accounts: Variable number of accounts passed to adapter programs.

« Signer: Varies.
« Init: Varies.

« PDA: Varies.
Mutable: Varies.

» Constraints: No.

Additional checks and behavior

» Emits AccountingInvokeBegin event at the start of processing.

Zellic © 2025 < Back to Contents Page 96 of 134

1% :
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» Calls adapter::invoke_many() with is_signer = false, meaning the margin account
is not provided as a signer to invoked programs.

» Adapters can only perform read-only operations and report position-state changes.

» Thisis a permissionless way of updating position values that require adapter-provided
updates.

* Emits AccountingInvokeEnd event upon completion.

« All position changes reported by adapters are processed and may emit PositionEvent
events.

CPI

+ Calls multiple adapter programs via adapter: :invoke_many().

« The margin account does not act as a signer in these CPlIs, restricting adapters to
read-only operations.

» Adapters cannot transfer tokens or modify balances, only report state changes.

Instruction: liquidate_begin

The instruction begins the liquidation process for an unhealthy margin account. This instruction
creates a liquidation state account and sets the margin account into liquidation mode, preventing
the owner from taking actions until the liquidation is completed or timed out.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» margin_account: The accountin need of liquidation.

« Signer: No.

* Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must be unhealthy (failing collateralization requirements).
 payer: The address paying rent for the liquidation state account.

« Signer: Yes.
« Init: No.

« PDA: No.

* Mutable: Yes.

Zellic © 2025 < Back to Contents Page 97 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Constraints: Must have sufficient funds to create the liquidation account.

 liquidator: The liquidator account performing the liquidation actions.

Signer: Yes.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must have a valid liquidation permit.

» permit: The permit allowing the liquidator to perform liquidations.

Signer: No.
Init: No.
PDA: Yes.
Mutable: No.

Constraints: Must be owned by the liquidator, contain LIQUIDATE
permissions, and be in the same airspace as the margin account.

« liquidation: Account to persist the state of the liquidation.

Signer: No.

Init: Yes.

PDA: Yes (seeds: ["1iquidation", margin_account, liquidator]).
Mutable: Yes.

» Constraints: No — account must exist at the address derived from the seeds.

» system_program: The Solana system program for account creation.

» Signer: No.

Init: No.
PDA: No.
Mutable: No.

« Constraints: Must be the system program.

Additional checks and behavior

Verifies the margin account is unhealthy via valuation.verify_unhealthy().
Checks if the account is already being liquidated and handles it accordingly:

« If already claimed by the same liquidator, returns successfully.

« If claimed by a different liquidator, returns Liquidating error.

« If not being liquidated, claims it for the current liquidator.

Calculates maximum equity loss allowed based on account liabilities using the formula M

* liabilities + Bwhere M and B are protocol constants.

collateral.

Calculates maximum available collateral increase limit as a percentage of required

Zellic © 2025

< Back to Contents

Page 98 of 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Creates liquidation state with timestamp, max equity loss, and collateral limits.
» Emits LiquidationBegun event with comprehensive liquidation details.

CPI

« Calls the system program to create the liquidation-state account.

Instruction: liquidate_end

This instruction ends the liquidation state for a margin account, allowing the account owner to
regain control. This instruction can be called by the liquidator who initiated the liquidation or by
anyone after the liquidation time-out period has elapsed.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» authority: The pubkey calling the instruction to end liquidation.

» Signer: Yes.
* Init: No.

« PDA: No.

« Mutable: Yes.

« Constraints: Must be either the liquidator (before time-out) or any signer
(after time-out).

« margin_account: The account that was under liquidation.

« Signer: No.

* Init: No.

« PDA: Yes.

* Mutable: Yes.

» Constraints: Must have a liquidator matching the liquidation state.
» liquidation: Account storing the liquidation state.

« Signer: No.

* Init: No.

» PDA: Yes.

Mutable: Yes.

« Constraints: Must reference the correct margin account.

Zellic © 2025 < Back to Contents Page 99 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Additional checks and behavior

» Checks if the liquidation has timed out by comparing the current timestamp with start
time plus LIQUIDATION_TIMEOUT (60 seconds).

» Regarding the authorization logic — before time-out, only the original liquidator can end
the liquidation, and after time-out, anyone can end the liquidation (emergency
mechanism).

» Callsaccount.end_liquidation() toresetthe margin account's liquidator field.
» The liquidation account is automatically closed via Anchor's close constraint.

» Emits the LiquidationEnded event with details about who ended it and whether it timed
out.

CPI

No external CPI calls are made. Account closure is handled by Anchor's close constraint.

Instruction: liquidator_invoke

This instruction performs actions by invoking adapter programs during the liquidation process.
This instruction provides the margin account as a signer to adapter programs, granting them
authority to modify token balances for liquidation purposes while enforcing strict equity loss and
value-extraction limits.

Input parameters

* The instructions parameter contains the instruction data that will be passed to the
invoked adapter programs for liquidation actions.

instructions: Vec<IxData>

Accounts

» liquidator: The liquidator processing the margin account.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must match the liquidator in the liquidation state.
» liquidation: Account storing the liquidation state.

Zellic © 2025 < Back to Contents Page 100 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must reference the correct liquidator and margin account. Must
not be in fee-collection mode.

» margin_account: The margin account being liquidated.

« Signer: No.

* Init: No.

» PDA: Yes.

* Mutable: Yes.

» Constraints: Must match the margin account in the liquidation state.
» liquidator_fee_mint: The mintin which the liquidator will accrue fees.

« Signer: No.
« Init: No.
» PDA: No.
» Mutable: No.
» Constraints: No.
» liquidator_fee_token_program: The token program for the fee mint.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must be a token program.

Remaining accounts: Variable number of accounts passed to adapter programs.

« Signer: Varies.
« Init: Varies.

» PDA: Varies.

* Mutable: Varies.
» Constraints: No.

Additional checks and behavior

» Records starting-account valuation before adapter invocations.
* Emits LiquidatorInvokeBegin event.

» Calls adapter::invoke_many() with is_signer = true, providing the margin account
as a signer.

» Calculates liquidation fees based on token-balance changes:

Zellic © 2025 < Back to Contents Page 101 0f 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Filters changes to the fee mint for relevant operations (borrow, repay,
external transfers)

 Calculates fee-eligible tokens as the minimum of increases and repayments

» Applies the liquidation fee rate using the formula fee_rate / (1 +
fee_rate) * eligible_amount

» Accrues liquidation fees in the liquidation state.
» Updates and verifies liquidation constraints:

» Tracks equity loss and ensures it does not exceed maximum allowed
» Monitors collateral changes and prevents reductions
» Enforces available collateral limits

» Emits LiquidatorInvokeEnd event with liquidation summary.

CPI

Calls multiple adapter programs via adapter: : invoke_many () with the margin account
as signer.

» Adapters can transfer tokens and modify balances under liquidation constraints.

Instruction: refresh_position_config

This instruction updates the configuration metadata for a position in a margin account when the
token configuration has changed after the position was created. This instruction allows authorized
refreshers to update position parameters to match updated token configurations.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» margin_account: The margin account with the position to be refreshed.

« Signer: No.

« Init: No.

» PDA: Yes.

¢ Mutable: Yes.

» Constraints: Must be in the same airspace as the token config via the
airspace constraint.

« config: The updated config account for the token.

« Signer: No.

Zellic © 2025 < Back to Contents Page 102 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

 |nit: No.
PDA: Yes.
Mutable: No.

Constraints: Must be in the same airspace as the margin account via the
WrongAirspace check.

« permit: Permit that authorizes the refresher.

« Signer: No.
* Init: No.

» PDA: Yes.

» Mutable: No.

» Constraints: Must be in the same airspace as the margin account via
WrongAirspace check.

» refresher: Account thatis authorized to refresh position metadata.

» Signer: Yes.
« Init: No.

» PDA: No.

« Mutable: No.

« Constraints: Must have valid permit with REFRESH_POSITION_CONFIG
permissions.

Additional checks and behavior

Validates the refresher's permit contains REFRESH_POSITION_CONFIG permissions via
permit.validate().

» Callsaccount.refresh_position_metadata() with updated configuration parameters:
token mint, token kind, value modifier, max staleness, and token features.

» There is special handling for restricted tokens:

« If atoken becomes restricted and the margin account has no feature flags,
sets the VIOLATION flag.

» This mechanism enforces compliance when token configurations change to
restricted status.

» Users must close restricted positions to remedy violations.
» Updates position metadata in place without requiring position closure and recreation.

CPI

No external CPI calls are made. This is a metadata update operation.

Zellic © 2025 < Back to Contents Page 103 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: refresh_deposit_position

This instruction refreshes the price and optionally the balance for a deposit position in a margin
account. This instruction updates position data using current oracle prices and actual token
account balances to ensure accurate valuation.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» margin_account: The account to update.

« Signer: No.
« Init: No.
« PDA: Yes.
« Mutable: Yes.
« Constraints: No.
» config: The margin config for the token.

« Signer: No.

« Init: No.

» PDA: Yes.

» Mutable: No.

» Constraints: Must be in the same airspace as the margin account.
» price_oracle: Oracle account for token pricing.

« Signer: No.

« Init: No.

« PDA: No.

» Mutable: No.

» Constraints: Must be a valid Pyth Pull Receiver program account.

» redemption_quote_oracle: Optional oracle for quote token when using redemption
rates.

« Signer: No.

« Init: No.

» PDA: No.

Mutable: No.

» Constraints: Must be a valid Pyth Pull Receiver program account, if provided.

Optional account via remaining_accounts:

Zellic © 2025

< Back to Contents Page 104 of 134

] :
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» position_token_account: Token account to refresh balance for (first remaining
account if provided).

Additional checks and behavior

» Extracts oracle configuration from the token config and validates it exists.

» Constructs PriceChangeInfo from oracle accounts using
try_from_oracle_accounts().

« If a position token account is provided in the remaining accounts, it

 reads the current token balance using token: :accessor: :amount (), and
 updates the position balance in the margin account with current timestamp.
» Updates the position price using the oracle-derived price information.

» Both price and balance updates use the current system timestamp for staleness
tracking.

« Oracle verification ensures only authorized price feeds can update position values.

CPI

No external CPI calls are made. This instruction reads oracle data and updates margin-account
state.

Instruction: create_deposit_position

This instruction creates a new position for holding SPL token deposits directly by a margin account.
This instruction registers an associated token account with the margin account to enable direct
token deposits and withdrawals.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

» authority: The authority that can change the margin account.

« Signer: Yes.

* Init: No.

» PDA: No.

Mutable: No.

» Constraints: Must be the verified authority for the margin account.

Zellic © 2025 < Back to Contents Page 105 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

 payer: The address paying for rent of the associated token account.

« Signer: Yes.
« Init: No.

« PDA: No.

¢ Mutable: Yes.

» Constraints: Must have sufficient funds to create the associated token
account.

« margin_account: The margin account to register this deposit account with.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: Yes.
» Constraints: No.
» mint: The mint for the token being stored in this deposit account.

« Signer: No.

« Init: No.

« PDA: No.

» Mutable: No.

» Constraints: Must match the mint in the token configuration.
» config: The margin config for the token.

« Signer: No.
* Init: No.

» PDA: Yes.

« Mutable: No.

« Constraints: Must be in the same airspace as the margin account and have
the correct mint.

» token_account: The associated token account to store deposits.

« Signer: No.

« Init: No.

« PDA: Yes (associated token account).
» Mutable: No.

» Constraints: Must be the associated token account for the mint and margin
account.

» associated_token_program: The associated token program.

« Signer: No.
* Init: No.

» PDA: No.

« Mutable: No.

Zellic © 2025 < Back to Contents Page 106 of 134

1%
NN
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Constraints: Must be the associated token program.
* mint_token_program: The token program for the mint.

« Signer: No.

« Init: No.

» PDA: No.

Mutable: No.

» Constraints: Must be a token program.

* rent: Therent sysvar.

« Signer: No.
« Init: No.
« PDA: No.
« Mutable: No.
« Constraints: No.
» system_program: The system program.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

« Verifies the authority has permission to modify the margin account.

» CreatesaPositionConfigUpdate from the token configuration with token mint,
decimals, token account address, and adapter program (if any).

» Registers the new position with Approver: :MarginAccountAuthority.

» The associated token account is derived deterministically from the margin account and
mint.

« Position registration may fail if the account has reached maximum positions.

CPI

The associated-token-account creation is handled by Anchor's constraint system, which may
involve CPI calls to create the account if it does not exist.

Instruction: transfer_deposit

This instruction transfers tokens into or out of a token account being used for deposits by a margin
account. This instruction handles both deposits and withdrawals while maintaining accurate

Zellic © 2025 < Back to Contents Page 107 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

position balance tracking.

Input parameters

The amount parameter specifies how many tokens to transfer between the source and destination
accounts.

amount: u64

Accounts

 owner: The authority that owns the margin account.

« Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» Constraints: Must be the owner of the margin account.
* margin_account: The margin account associated with the deposit account.

« Signer: No.

« Init: No.

« PDA: Yes.

« Mutable: Yes.

» Constraints: Must have owner as its owner.
» source_owner: The authority for the source account.

« Signer: No.

* Init: No.

» PDA: No.

« Mutable: No.

» Constraints: Must be the authority for the source token account.
» source: The source account to transfer tokens from.

« Signer: No.

« Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: Must have a matching mint and token program.
» destination: The destination account to transfer tokens to.

« Signer: No.

Zellic © 2025 < Back to Contents Page 108 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Init: No.

» PDA: No.

¢ Mutable: Yes.

 Constraints: Must have a matching mint and token program.
» mint: The mint for the tokens being transferred.

« Signer: No.

* Init: No.

» PDA: No.

Mutable: No.

» Constraints: Must match the mint of both source and destination accounts.

» token_program: The token program interface.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be a token program.

Additional checks and behavior

Verifies the token mint is registered as a position in the margin account.
Handles two transfer scenarios:

1. Margin account as source — uses margin account signer seeds for
authorization.

2. External source — uses the provided source_owner as authority.

» Executes transfer_checked CPIl with appropriate authority and signer seeds.
» Reloads the affected token account after transfer to get updated balance.

» Updates the margin account's position balance with the new token amount and current
timestamp.

» Theinstruction is flexible for both deposits (external » margin account) and withdrawals
(margin account > external).

CPI

« Calls token_interface::transfer_checked with either

 the margin account as signer authority (when transferring from margin
account positions), or

« the external source owner as authority (when transferring from external
accounts).

Zellic © 2025 < Back to Contents Page 109 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: configure_token

This instruction sets the configuration for a token, which allows it to be used as a position in a
margin account. This instruction creates or updates token configuration within an airspace,
defining how the token can be used for collateral, claims, and other margin operations.

Input parameters

If update is Some (TokenConfigUpdate), the configuration is created or updated with the provided
parameters. If None, the configuration account is deleted and rent is returned.

The TokenConfigUpdate struct contains the following.

» underlying_mint: The underlying token represented.

update:

Accounts

underlying_mint_token_program: The underlying token's program.

admin: Administration authority (Adapter or Margin).

token_kind: Description of token type (Collateral,AdapterCollateral,Claim).

value_modifier: Modifier to adjust token value based on kind.

max_staleness: Maximum acceptable staleness for token balances (seconds).

token_features: Feature flags including restrictions.

Option<TokenConfigUpdate>

« authority: The authority allowed to make configuration changes.

airspace:

Signer: Yes.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must be the airspace authority.
The airspace being modified.

Signer: No.

Init: No.

PDA: Yes.

Mutable: No.

Constraints: Authority must match the airspace authority.

payer: The payer for rent costs when creating configuration.

Signer: Yes.

Zellic © 2025 < Back to Contents

Page 110 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Init: No.

PDA: No.

Mutable: Yes.

Constraints: Must have sufficient funds for account creation.

» mint: The mint for the token being configured.

Signer: No.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must be a token mint.

« token_config: The config account to be modified.

Signer: No.

Init: Yes (if needed).

PDA: Yes (seeds: ["token_config", airspace, mint]).
Mutable: Yes.

Constraints: Must have a size of 8 +
std::mem::size_of::<TokenConfig>() bytes.

» system_program: The system program for account operations.

Signer: No.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must be the system program.

Additional checks and behavior

« Emits the TokenConfigured event before processing.

For deletion (None update), closes the account and returns rent to payer.
Validates configuration parameters:

» Token-balance staleness cannot exceed MAX_TOKEN_STALENESS.
» Token features must be known and valid combinations.

« Arestricted flag cannot be the only feature set.

» At most, one nonrestricted feature flag can be set.

» Enforces immutability rules for existing configurations:

» Token kind cannot be changed after creation.

» Admin type transitions are restricted (Adapter <-> Margin not allowed).

» Adapter addresses are immutable once set.

Feature flags cannot be changed once set (except RESTRICTED).

Zellic © 2025

< Back to Contents

Page 111 0f 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» Underlying mint cannot be changed.
« Validates value modifier limits based on token kind.
» Updates all configuration fields and calls config.validate () for final verification.

CPI

» May call the system program for account closure via Anchor's close functionality.

Instruction: configure_adapter

This instruction sets the configuration for an adapter program, determining whether a program is
authorized to be invoked by margin accounts within a specific airspace. This instruction controls
which external programs can interact with margin accounts.

Input parameters

If is_adapteris true, the program is authorized as an adapter. If false, the configuration is deleted
and the program is deauthorized.

is_adapter: bool

Accounts

 authority: The authority allowed to make configuration changes.

« Signer: Yes.

* Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the airspace authority.
 airspace: The airspace being modified.

« Signer: No.

« Init: No.

« PDA: Yes.

» Mutable: No.

» Constraints: Authority must match the airspace authority.
» payer: The payer for rent costs when creating configuration.

» Signer: Yes.

Zellic © 2025 < Back to Contents Page 112 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Init: No.

» PDA: No.

« Mutable: Yes.

» Constraints: Must have sufficient funds for account creation.
» adapter_program: The adapter program being configured.

« Signer: No.
* Init: No.
» PDA: No.
« Mutable: No.
» Constraints: No.
« adapter_config: The config account to be modified.

« Signer: No.

« Init: Yes (if needed).

» PDA: Yes (seeds: ["adapter_config", airspace, adapter_programl).
* Mutable: Yes.

» Constraints: Must have a size of 8 +
std::mem::size_of::<AdapterConfig>() bytes.

» system_program: The system program for account operations.

« Signer: No.

* Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

« Emits the AdapterConfigured event with airspace, adapter program, and authorization
status.

» Fordeauthorization (is_adapter = false), closes the account and returns rent to payer.

» For authorization (is_adapter = true), sets adapter_program field to the program's
public key and sets the airspace field to the airspace's public key.

» The configuration serves as authorization for the margin program to invoke the adapter.

« Only programs with valid adapter configurations can be called via adapter_invoke or
liquidator_invoke.

CPI

» May call the system program for account closure via Anchor's close functionality when
deauthorizing.

Zellic © 2025 < Back to Contents Page 113 of 134

1% :
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: configure_liquidator

This instruction sets the liquidation permissions for an account within a specific airspace,
determining whether the account is authorized to perform liquidations. This instruction is a
wrapper around the general permit configuration system.

Input parameters
If is_liquidatoris true,the LIQUIDATE permission is granted. If false, the permission is revoked.

is_liquidator: bool

Accounts

authority: The authority allowed to make configuration changes.

« Signer: Yes.

* Init: No.

» PDA: No.

« Mutable: No.

» Constraints: Must be the airspace authority.
» airspace: The airspace being modified.

« Signer: No.

¢ Init: No.

« PDA: Yes.

» Mutable: No.

» Constraints: Authority must match the airspace authority.

payer: The payer for rent costs when creating permits.

» Signer: Yes.

* Init: No.

« PDA: No.

« Mutable: Yes.

» Constraints: Must have sufficient funds for account creation.

owner: The account being granted or revoked liquidation permissions.

« Signer: No.

« Init: No.

» PDA: No.
Mutable: No.

» Constraints: No.

Zellic © 2025 < Back to Contents Page 114 0f 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» permit: The permit account storing permissions.

« Signer: No.

« Init: Yes (if needed).

* PDA: Yes (seeds: ["permit", airspace, ownerl]).
¢ Mutable: Yes.

« Constraints: Must have asize of 8 + std::mem::size_of::<Permit>()
bytes.

» system_program: The system program for account operations.

« Signer: No.

* Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

+ Calls the generic configure_permit function with the Permissions: : LIQUIDATE flag.

» The permit system manages permissions using bitflags, allowing multiple permissions
per account.

« If granting permissions, the LIQUIDATE flag is added to existing permissions.

« If revoking permissions, the LIQUIDATE flag is removed from existing permissions.
« If all permissions are removed, the permit account is closed and rent is returned.

» Emits the PermitConfigured event with updated permission set.

CPI

» May call the system program for account closure via Anchor's close functionality when
all permissions are revoked.

Instruction: configure_position_config_refresher

This instruction sets the position-configuration refresh permissions for an account within a
specific airspace, determining whether the account is authorized to refresh position configurations
when token configurations change.

Input parameters

If may_refreshis true, the REFRESH_POSITION_CONFIG permission is granted. If false, the
permission is revoked.

Zellic © 2025 < Back to Contents Page 115 0f 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

may_refresh: bool

Accounts

 authority: The authority allowed to make configuration changes.

« Signer: Yes.

* Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the airspace authority.
» airspace: The airspace being modified.

« Signer: No.

« Init: No.

« PDA: Yes.

» Mutable: No.

 Constraints: Authority must match the airspace authority.
» payer: The payer for rent costs when creating permits.

» Signer: Yes.

* Init: No.

« PDA: No.

« Mutable: Yes.

» Constraints: Must have sufficient funds for account creation.
» owner: The account being granted or revoked refresh permissions.

« Signer: No.

« Init: No.

» PDA: No.
Mutable: No.

» Constraints: No.

* permit: The permit account storing permissions.

« Signer: No.

* Init: Yes (if needed).

* PDA: Yes (seeds: ["permit", airspace, ownerl]).
¢ Mutable: Yes.

» Constraints: Must have asize of 8 + std::mem::size_of::<Permit>()
bytes.

» system_program: The system program for account operations.

Zellic © 2025 < Back to Contents Page 116 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: No.

« PDA: No.

» Mutable: No.

 Constraints: Must be the system program.

Additional checks and behavior

» Calls the generic configure_permit function with the
Permissions: :REFRESH_POSITION_CONFIG flag.

» The permit system manages permissions using bitflags, allowing multiple permissions
per account.

« If granting permissions, the REFRESH_POSITION_CONFIG flag is added to existing
permissions.

« If revoking permissions, the REFRESH_POSITION_CONFIG flag is removed from existing
permissions.

« If all permissions are removed, the permit account is closed and rent is returned.
» Emits PermitConfigured event with updated permission set.

CPI

» May call the system program for account closure via Anchor's close functionality when
all permissions are revoked.

Instruction: admin_transfer_position

This instruction allows the protocol governor to transfer any position from one margin account to
another. This instruction is provided as an emergency mechanism to manually fix issues that occur
in the protocol due to problematic user assets or other exceptional circumstances.

Input parameters

The amount parameter specifies how many tokens to transfer from the source to the target margin
account.

amount: u64

Accounts

» authority: The administrative authority.

Zellic © 2025

< Back to Contents Page 117 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: Yes.
« Init: No.
» PDA: No.
» Mutable: No.
» Constraints: Must be the protocol governor address.
» target_account: The target margin account to move a position into.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: Yes.
» Constraints: No.
» source_account: The source margin account to move a position out of.

« Signer: No.
« Init: No.
» PDA: Yes.
* Mutable: Yes.
» Constraints: No.
» source_token_account: The token account to be moved from.

« Signer: No.

« Init: No.

» PDA: No.

« Mutable: Yes.

» Constraints: Must match the token mint and token program and be owned by
the source margin account.

» target_token_account: The token account to be moved into.

« Signer: No.
« Init: No.
» PDA: No.
* Mutable: Yes.
 Constraints: Must match the token mint.
» token_mint: The mint for the tokens being transferred.

« Signer: No.

« Init: No.

» PDA: No.

« Mutable: No.

« Constraints: Must match both token accounts.
 token_program: The token program interface.

« Signer: No.

Zellic © 2025 < Back to Contents Page 118 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Init: No.

« PDA: No.

Mutable: No.

Constraints: Must be a token program.

Additional checks and behavior

» Uses the source margin account's signer seeds to authorize the token transfer.
» Executes the transfer_checked CPIl with the source margin account as authority.
» Reloads both token accounts after transfer to get updated balances.

» Updates both margin accounts' position balances with new token amounts and current
timestamp.

» Emits the TransferPosition event with details about the transfer.

CPI

» Calls token_interface::transfer_checked with the source margin account as signer
authority using its signer seeds.

Instruction: init_lookup_registry

This instruction creates a lookup-table registry account owned by a margin account. The registry
serves as a container for address lookup tables that store addresses for accounts owned by the
margin account, such as PDAs, pool accounts, and other accounts from adapters.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

+ authority: The authority that can register a lookup table for a margin account.

« Signer: Yes.

« Init: No.

« PDA: No.

» Mutable: No.

» Constraints: Must be the verified authority for the margin account.
» payer: The payer of the transaction.

» Signer: Yes.

Zellic © 2025 < Back to Contents Page 119 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Init: No.

» PDA: No.

¢ Mutable: Yes.

» Constraints: Must have sufficient funds for account creation.
» margin_account: The margin account to create this lookup registry for.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: No.
» Constraints: No.
* registry_account: The registry account being created.

« Signer: No.
« Init: No.
» PDA: No.
* Mutable: Yes.
» Constraints: No.
* registry_program: The lookup-table registry program.

« Signer: No.

« Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must be the lookup-table registry program.
» system_program: The system program for account creation.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

Verifies the authority has permission to modify the margin account.
» Uses the margin account's signer seeds to act as authority for the registry creation.

Makes a CPI call to the lookup-table registry program to initialize the registry account.

CPI

Calls lookup_table_registry::cpi::init_registry_account with the margin

Zellic © 2025 < Back to Contents Page 120 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

account as authority using its signer seeds.

Instruction: create_lookup_table

This instruction creates a lookup table in a registry account owned by a margin account. This
instruction enables the creation of address lookup tables that can store frequently used account
addresses to optimize transaction size and composition.

Input parameters

The recent_slot parameter must be a recent slot number as required by the Solana address
lookup-table program. The discriminator provides uniqueness for multiple lookup tables within
the same registry.

recent_slot: u64,
discriminator: u64

Accounts

« authority: The authority that can register a lookup table for a margin account.

« Signer: Yes.

* Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must be the verified authority for the margin account.
» payer: The payer of the transaction.

« Signer: Yes.

« Init: No.

» PDA: No.

* Mutable: Yes.

 Constraints: Must have sufficient funds for account creation.
» margin_account: The margin account that owns the registry.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: No.
« Constraints: No.
* registry_account: The registry account that will contain the lookup table.

Zellic © 2025 < Back to Contents Page 1210f 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: No.

» PDA: No.

* Mutable: Yes.

 Constraints: Must be owned by the margin account and managed by the
registry program.

» lookup_table: The lookup table being created.

« Signer: No.
* Init: No.
» PDA: No.
* Mutable: Yes.
» Constraints: No.
+ address_lookup_table_program: The Solana Address Lookup Table program.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

 Constraints: Must be the Address Lookup Table program.
* registry_program: The lookup-table registry program.

« Signer: No.

* Init: No.

« PDA: No.

« Mutable: No.

« Constraints: Must be the lookup-table registry program.
» system_program: The system program for account creation.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be the system program.

Additional checks and behavior

« Verifies the authority has permission to modify the margin account.
» Uses the margin account's signer seeds to act as authority for the lookup-table creation.
» Makes a CPI call to the lookup-table registry program to create the lookup table.

Zellic © 2025 < Back to Contents Page 122 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

CPI

» Calls lookup_table_registry::cpi::create_lookup_table with the margin account
as authority using its signer seeds.

Instruction: append_to_lookup

This instruction appends addresses to an existing lookup table in a registry account owned by a
margin account. This instruction allows adding frequently used account addresses to optimize
transaction composition and reduce transaction size.

Input parameters
The addresses parameter contains the list of account addresses to be added to the lookup table.

addresses: Vec<Pubkey>

Accounts

» authority: The authority that can manage lookup tables for a margin account.

« Signer: Yes.

* Init: No.

» PDA: No.

* Mutable: No.

» Constraints: Must be the verified authority for the margin account.
 payer: The payer of the transaction.

« Signer: Yes.
« Init: No.
« PDA: No.
e Mutable: Yes.
 Constraints: Must have sufficient funds for account expansion.
» margin_account: The margin account that owns the registry and lookup table.

« Signer: No.
* Init: No.
» PDA: Yes.
« Mutable: No.
» Constraints: No.
* registry_account: The registry account containing the lookup table.

Zellic © 2025 < Back to Contents Page 123 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

Signer: No.
Init: No.

PDA: No.
Mutable: Yes.

Constraints: Must be owned by the margin account and managed by the
registry program.

» lookup_table: The lookup table being modified.

Signer: No.
Init: No.

PDA: No.
Mutable: Yes.

Constraints: Must exist within the registry and be owned by the margin
account.

» address_lookup_table_program: The Solana Address Lookup Table program.

Signer: No.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must be the Address Lookup Table program.

* registry_program: The lookup-table registry program.

Signer: No.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must be the lookup-table registry program.

» system_program: The system program for account operations.

Signer: No.

Init: No.

PDA: No.

Mutable: No.

Constraints: Must be the system program.

Additional checks and behavior

« Verifies the authority has permission to modify the margin account.

» Uses the margin account's signer seeds to act as authority for the lookup-table
operations.

» Makes a CPI call to the lookup-table registry program to append addresses.

Zellic © 2025

< Back to Contents

Page 124 of 134

1%
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

CPI

» Calls lookup_table_registry::cpi::append_to_lookup_table with the margin
account as authority using its signer seeds.

Instruction: collect_liquidation_fee

This instruction collects accrued liquidation fees from a liquidation state, transferring the fee
tokens from the margin account to the liquidator. This instruction handles the final settlement of
liquidation fees while ensuring the margin account remains healthy after fee collection.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Accounts

* margin_account: The account that was under liquidation.

« Signer: No.

« Init: No.

» PDA: Yes.

» Mutable: Yes.

» Constraints: Must pass health check after fee collection.
» liquidator: The liquidator account collecting the fees.

» Signer: Yes.

« Init: No.

» PDA: No.

« Mutable: Yes.

« Constraints: Must match the liquidator in the liquidation state.
« liquidation: Account storing the liquidation state with accrued fees.

« Signer: No.
« Init: No.
» PDA: Yes(seeds: ["liquidation", margin_account, liquidatorl]).
* Mutable: Yes.
» Constraints: No.
» liquidator_fee_token: The liquidator's token account to receive fees.

« Signer: No.
* Init: No.

Zellic © 2025 < Back to Contents Page 125 of 134

1% :
N
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

* PDA: No.
* Mutable: Yes.

» Constraints: Must be owned by the liquidator and match the fee mint and
token program.

« margin_account_fee_source: The margin account's token account to transfer fees
from.

« Signer: No.

« Init: No.

« PDA: No.

e Mutable: Yes.

» Constraints: Must be owned by the margin account and match the fee mint
and token program.

» liquidation_fee_mint: The mint of the token being used for fee payment.

« Signer: No.
* Init: No.
» PDA: No.
» Mutable: No.
» Constraints: Must match the token configuration.
* liquidator_fee_token_program: The token program for fee transfers.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

 Constraints: Must be a token program.
» token_config: Configuration for the fee token.

« Signer: No.

* Init: No.

» PDA: Yes.

Mutable: No.

« Constraints: Must be in the same airspace and match the fee mint.

» price_oracle: Oracle account for fee token pricing.

« Signer: No.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must be a valid Pyth Pull Receiver program account.

» redemption_quote_oracle: Optional oracle for quote token when using redemption
rates.

Zellic © 2025 < Back to Contents Page 126 of 134

Glow Protocol Solana Application Security Assessment

« Signer: No.
« Init: No.

» PDA: No.

» Mutable: No.

 Constraints: Must be a valid Pyth Pull Receiver program account, if provided.

Additional checks and behavior

CPI

Sets liquidation state to fee-collection mode (is_collecting_fees = 1).
Validates that the fee mint exists in the accrued liquidation fees.

Requires token configuration to have margin admin type with a valid oracle.
Constructs price information from oracle accounts for fee valuation.
Calculates liquidation-fee value using the current token price.

Applies equity-loss offset logic:

« If no equity loss, the liquidator receives the full fee.
« If equity loss exceeds the fee value, the fee is fully absorbed.
» Otherwise, the fee is reduced by the equity-loss amount.
Transfers calculated fee tokens from margin account to liquidator.
Updates margin-account position balance after fee transfer.
Clears the fee slot in liquidation state.
Verifies margin-account health after fee collection.

Calls token_interface: : transfer_checked to transfer fee tokens from margin

account to liquidator using margin account's signer seeds.

Instruction: migrate_token_config

August 13,2025

This instruction migrates existing token-configuration accounts from an older version to the
current version format. This instruction handles schema migrations by deserializing old
configurations, converting them to the new format and reallocating account storage as needed.

Input parameters

This instruction takes no additional parameters beyond the accounts.

Zellic © 2025

< Back to Contents

Page 127 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Accounts

» authority: The authority allowed to make configuration changes.

 Signer: Yes.

« Init: No.

« PDA: No.

» Mutable: No.

» Constraints: Must be the airspace authority.
 airspace: The airspace of the config.

« Signer: No.

* Init: No.

» PDA: Yes.

* Mutable: No.

» Constraints: Authority must match the airspace authority.
 payer: The payer for any additional rent costs.

« Signer: Yes.

« Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: Must have sufficient funds to cover rent for reallocation.
» mint: The mint for the token being migrated.

« Signer: No.

« Init: No.

« PDA: No.
Mutable: No.

« Constraints: No.

» token_config: The config account to be migrated.

« Signer: No.
« Init: No.
» PDA: Yes (seeds: ["token_config", airspace, mint]).
* Mutable: Yes.
» Constraints: Must be owned by the margin program.
» system_program: The system program for account operations.

« Signer: No.

« Init: No.

« PDA: No.

« Mutable: No.

 Constraints: Must be the system program.

Zellic © 2025 < Back to Contents Page 128 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Additional checks and behavior

» Verifies the token-config account is owned by the margin program.
 Deserializes the existing configuration using the old TokenConfig format.
« Creates a new configuration struct with

« all existing fields preserved,
» the new token_features field set to default (empty),
« the updated version number to TOKEN_CONFIG_VERSION, and
« reserved bytes for future expansion.
» Calculates required rent for the new account size.
» Transfers funds from payer to the config account if additional rent is needed.
» Reallocates the account to the new size using account.realloc().
« Serializes the new configuration format into the reallocated account.

CPI

* May call anchor_lang: :system_program: : transfer if additional rent is required for
account reallocation.

5.5. Program: metadata

Instruction: create_entry

This instruction creates a new metadata entry account (as a PDA under the airspace) initialized
with minimal size.

Input parameters

» key_account: Pubkey: The key used with the airspace to derive the entry PDA.
» space: u64: Requested space.

Accounts

 payer: Pays rent to create the entry.

« Signer: Yes.

« Init: No.

» PDA: No.

* Mutable: Yes.

» Constraints: Must have sufficient lamports.

Zellic © 2025 < Back to Contents Page 129 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« authority: Airspace authority authorizing the write.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Mustequal airspace.authority.
» airspace: The airspace the entry belongs to.

« Signer: No.

* Init: No.

« PDA: No.

Mutable: No.

» Constraints: airspace.authority == authority.key().

» metadata_account: The entry PDA to create.

« Signer: No.

« Init: Yes.

» PDA:Yes — seeds = [airspace.key().as_ref(), key_account.as_ref()].

* Mutable: Yes.

» Constraints: space = 8(minimal), owned by this program, and rent-exempt.
» system_program: The system program.

« Signer: No.

« Init: No.

« PDA: No.

» Mutable: No.

« Constraints: Must be the system program.

Additional checks and behavior
« Authorization is enforced by the airspace.authority == authority constraint.

» Despite the space parameter, the entry is initialized with minimal size (eight bytes);
callers must use set_entry to allocate actual payload size.

CPI

« Implicit Anchor init uses the system program create_account to create the PDA.

Zellic © 2025 < Back to Contents Page 130 of 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

Instruction: set_entry

This instruction writes arbitrary bytes into an existing entry at of fset, reallocating the account
upward and topping up rent as needed.

Input parameters

* key_account: Pubkey: The key used with the airspace to derive/validate the entry PDA.
» offset: u64: Byte offset at which to begin writing.
e data: Vec<u8>: Bytesto write.

Accounts

 payer: Pays additional rent if the entry grows.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: Yes.

» Constraints: Must have sufficient lamports to cover any rent top-up.
» authority: Airspace authority authorizing the mutation.

» Signer: Yes.

« Init: No.

« PDA: No.

« Mutable: No.

» Constraints: Must equal airspace.authority.
 airspace: The airspace the entry belongs to.

« Signer: No.

* Init: No.

» PDA: No.

» Mutable: No.

» Constraints: airspace.authority == authority.key().
» metadata_account: The entry PDA to modify.

« Signer: No.

« Init: No.

» PDA:Yes — seeds = [airspace.key().as_ref(), key_account.as_ref()].

e Mutable: Yes.

» Constraints: Must be owned by this program — rent-exempt after any realloc.
» system_program: The system program.

Zellic © 2025 < Back to Contents Page 1310f 134

1% :
NS
\4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

« Signer: No.

« Init: No.

« PDA: No.

» Mutable: No.

 Constraints: Must be the system program.

Additional checks and behavior

« Computesnew_len = offset + data.len() — oninteger overflow, the instruction
errors with ErrorCode: :ConstraintSpace.

» |[fmetadata_account.data_len() < new_len,

» computes required lamports using Rent: :minimum_balance(new_len),
« transfers any shortfall from payer to metadata_account, and

» callsmetadata_account.realloc(new_len, /*zero_init=*/false). Newly
added bytes are not zeroed.

» Performs anin-place copy: metadata[offset .. offset+data.len()] = data.

» Shrinking is not performed; if new_1len < current length, the account size remains
unchanged and only the slice is overwritten.

» Contentis opaque; no schema validation is performed by this program.

CPI

» System program transfer (to top up rent when growing).
» Uses Anchor’s in-program realloc on the PDA (no external CPI for realloc).

Instruction: remove_entry

This instruction deletes an entry by manually closing its PDA and transferring all lamports to a
receiver.

Input parameters

» key_account: Pubkey: The key used with the airspace to derive/validate the entry PDA.

Accounts

» receiver: Destination for reclaimed lamports.

« Signer: No.
* Init: No.

Zellic © 2025 < Back to Contents Page 132 0f 134

2 .
4W ZelIIC Glow Protocol Solana Application Security Assessment August 13,2025

» PDA: No.

e Mutable: Yes.

» Constraints: Expected to be a wallet; only receives lamports.
« authority: Airspace authority authorizing the deletion.

« Signer: Yes.

« Init: No.

» PDA: No.

» Mutable: No.

» Constraints: Must equal airspace.authority.
« airspace: The airspace the entry belongs to.

« Signer: No.

« Init: No.

» PDA: No.

« Mutable: No.

» Constraints: airspace.authority == authority.key().
» metadata_account: The entry PDA to remove.

« Signer: No.

* Init: No.

* PDA:Yes —seeds = [airspace.key().as_ref(), key_account.as_ref()].
e Mutable: Yes.

« Constraints: Must be owned by this program.

Additional checks and behavior

» Manually closes the PDA. Drains lamports from metadata_account to receiver —
assign(&system_program::ID) to clear ownership and realloc(0,
/*zero_init=*/false) to zero-length data.

* No eventis emitted; content is considered opaque and is not cleared beyond ownership
reset and size 0.

CPI

None.

Zellic © 2025 < Back to Contents Page 133 of 134

Glow Protocol Solana Application Security Assessment August 13,2025

6. Assessment Results

During our assessment on the scoped Glow Protocol programs, we discovered 10 findings. No
critical issues were found. Five findings were of high impact, four were of medium impact, and one
was of low impact.

We strongly recommend increasing test coverage to include both positive and negative test cases
for all instructions and business logic. Positive cases should validate that your code behaves
correctly under normal conditions and produces expected outputs, while negative cases should
verify that your system gracefully handles edge cases, invalid inputs, and error conditions without
failing unexpectedly.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, and we encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025

< Back to Contents Page 134 of 134

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Glow Protocol
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Restricted airspace permit has incorrect issuer ID
	Instruction collect_liquidation_fee uses a local copy of LiquidationState
	Anyone can revoke a permit in an unrestricted airspace
	Governor can transfer user positions and loans
	Two-step finalize mechanism breaks on incorrect pubkey
	Margin register-position inconsistency
	Registry state corruption when reusing empty slots
	Registry-creation denial of service via rent manipulation
	Token-config reinitialization bypasses update checks
	Instruction configure_token should validate underlying_mint_token_program

	Discussion
	Improvements to account constraints
	Recommendations for PDA seed design
	Adapter-invoke trust model
	Library error handling
	Test suite

	Threat Model
	Program: address-lookup-table-registry
	Program: airspace
	Program: margin-pool
	Program: margin
	Program: metadata

	Assessment Results
	Disclaimer

