/| Security Assessment 09.29.2025 - 10.16.2025

Glow Margin Vaulls
Blueprint Finance

=/\LBLIRIN

Glow Margin Vaults - Blueprint Finance

Prepared by: gl HALBORN
Last Updated 11/26/2025

Date of Engagement: September 29th, 2025 - October 16th, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
10 1 1 o 2 6

TABLE OF CONTENTS

. Introduction
. Assessment summary
. Test approach and methodology

. Scope
. Assessment summary & findings overview

1
2
3
4. Risk methodology
5
6
7. Findings & Tech Details

7.1 Incorrect fees handling

7.2 Users may pay performance fees from unrealized profits
7.3 Missing token 2022 extensions validation

7.4 Insuffient operator permissions check

7.5 Incorrect pending withdrawal shares calculation

7.6 Reliance on manual or off-chain actions

7.7 Incorrect redundant position freshness validation

7.8 Missing instructions to withdraw uncollected fees

7.9 Unnecessary token program resolution

7.10 Passing unnecessary accounts

8. Automated Testing

The Glow team engaged Halborn to conduct a security assessment on their Glow Vault Solana
program beginning on September 29 2025, and ending on October 16, 2025. The security assessment was
scoped to the Solana Programs provided in glow-vi1 GitHub repository. Commit hashes and further details
can be found in the Scope section of this report.

The Glow Vault program allows users to deposit funds that are then operated by designated parties to
earn returns. Users deposit funds via direct deposits or margin account transfers into the vault, and are
minted a vault token representing shares of the vault. The program charges management and performance
fees at the time of withdrawal.

2. Assessment Summary

Halborn was provided 2.5 weeks for the engagement and assigned one full-time security engineer to
review the security of the Solana Programs in scope. The engineer is a blockchain and smart contract
security expert with advanced smart contract hacking skills, and deep knowledge of multiple blockchain
protocols.

The purpose of the assessment is to:

« ldentify potential security issues within the Solana Programs.
« Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some opportunities to reduce the likelihood and impact of risks, and the
Glow team implemented improvements to address them. The main ones were the following:

« Ensure both management and performance fees accounting is correctly handled.
« Ensure the performance fees are charged on actual profit at the time of withdrawal.
« Validate that operators have correct permissions.

The recommendation rated as low-risk to validate potentially dangerous or incompatible Token2022
extensions has been partially addressed, with a comprehensive solution already planned by the Glow team
for upcoming releases.

https://github.com/Blueprint-Finance/glow-v1

3. Test Approach And Methodology

Halborn performed a combination of a manual review of the source code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the program assessment.
While manual testing is recommended to uncover flaws in business logic, processes, and implementation;
automated testing techniques help enhance coverage of programs and can quickly identify items that do
not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

« Research into the architecture, purpose, and use of the platform.

« Manual program source code review to identify business logic issues.

« Mapping out possible attack vectors

« Thorough assessment of safety and usage of critical Rust variables and functions in scope that could
lead to arithmetic vulnerabilities.

« Scanning dependencies for known vulnerabilities (cargo audit).

o Local runtime testing (solana-test-framework)

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by

which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest
security risk. This provides an objective and accurate rating of the severity of security vulnerabilities in
smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to
address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Includes but is not limited to macro situation, available third-party liquidity and regulatory challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability & is calculated using the following formula:

E:Hme

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to a
successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly affecting
Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully exploited
vulnerability. This metric refers to smart contract features and functionality, not state. Availability impact
directly affecting Deposit or Yield is excluded.

DEPOSIT (D).

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS:

IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact [is calculated using the following formula:

> my — max(my)
4

I = maz(my) +

4.3 SEVERITY COEFFICIENT

REVERSIBILITY (R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts,
assume the contract private key is available.

SCOPE (S).
Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:

SEVERITY COEFFICIENT (C)

COEFFICIENT VALUE

NUMERICAL VALUE

None (R:N) 1
Reversibility (r) Partial (R:P) >
Full (R:F) 0.25
; Changed (S:C) 1.25
cope (s) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

C =rs

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC % 10)

The score is rounded up to 1 decimal places.

SEVERITY

SCORE VALUE RANGE

45-6.9

SEVERITY

SCORE VALUE RANGE

REPOSITORY

(a) Repository: glow-vi

(b) Assessed Commit ID: https://github.com/Blueprint-Finance/glow-
vl/pull/2437/commits/afde596e321892f23f396e4887cffic5db3b2aff

(c) Items in scope:

e Anchor.toml

« programs/margin-pool/src/instructions/withdraw.rs

« programs/margin/src/adapter.rs

« programs/margin/src/instructions.rs

« programs/margin/src/instructions/close_account.rs

« programs/margin/src/instructions/configure/configure_account_constraints.rs
« programs/margin/src/instructions/configure/mod.rs

« programs/margin/src/instructions/positions/transfer_deposit.rs

« programs/margin/src/lib.rs

« programs/margin/src/seeds.rs

« programs/margin/src/state/account.rs

« programs/margin/src/state/config.rs

« programs/vault/Cargo.toml

« programs/vault/Xargo.toml

o programs/vault/src/events.rs

« programs/vault/src/instructions.rs

« programs/vault/src/instructions/admin/accept_account_change.rs

« programs/vault/src/instructions/admin/accrue_performance_fees.rs

« programs/vault/src/instructions/admin/assign_vault_operator_admin.rs

« programs/vault/src/instructions/admin/configure_vault.rs

« programs/vault/src/instructions/admin/create_vault.rs

« programs/vault/src/instructions/admin/mod.rs

« programs/vault/src/instructions/admin/propose_account_change.rs

« programs/vault/src/instructions/operator/close_operator_margin_account.rs
« programs/vault/src/instructions/operator/create_operator_margin_account.rs
« programs/vault/src/instructions/operator/mod.rs

« programs/vault/src/instructions/operator/operator_deposit_to_vault.rs

« programs/vault/src/instructions/operator/operator_transfer_from_margin.rs
« programs/vault/src/instructions/operator/operator_transfer_to_margin.rs

« programs/vault/src/instructions/operator/operator_withdraw_from_vault.rs
« programs/vault/src/instructions/user/cancel_vault_pending_withdrawal.rs

« programs/vault/src/instructions/user/create_vault_pending_withdrawal.rs

« programs/vault/src/instructions/user/deposit.rs

https://github.com/Blueprint-Finance/glow-v1
https://github.com/Blueprint-Finance/glow-v1/pull/2437/commits/afde596e321892f23f396e4887cff1c5db3b2aff
https://github.com/Blueprint-Finance/glow-v1/pull/2437/commits/afde596e321892f23f396e4887cff1c5db3b2aff

« programs/vault/src/instructions/user/execute_vault_withdrawal.rs

« programs/vault/src/instructions/user/initiate_withdrawal.rs

« programs/vault/src/instructions/user/mod.rs

« programs/vault/src/instructions/valuation/mod.rs

« programs/vault/src/instructions/valuation/update_operator_margin_account_position.rs
« programs/vault/src/instructions/valuation/update_operator_wallet_position.rs
« programs/vault/src/instructions/valuation/update_vault_balances.rs

« programs/vault/src/lib.rs

« programs/vault/src/seeds.rs

« programs/vault/src/state/mod.rs

« programs/vault/src/state/operator.rs

« programs/vault/src/state/operator_position.rs

« programs/vault/src/state/pending_withdrawals.rs

« programs/vault/src/state/proposal.rs

o programs/vault/src/state/vault.rs

« programs/vault/src/state/vault_user.rs

« programs/vault/src/utils/margin_accounts.rs

« programs/vault/src/utils/mod.rs

« programs/vault/src/utils/tokens.rs

Out-of-Scope: Changes that are not part of the Pull Request 2437, third party dependencies and
economic attacks.

REMEDIATION COMMIT ID: ~

« 0299a8a
o falb70f
o leflff7
» fef8113
» 6a40dab
« 4839576
« 295c8a7
» f6d76b1

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

https://github.com/Blueprint-Finance/glow-v1/commit/0299a8ad54e11eb70c1536cba3f4b38d065c6153
https://github.com/Blueprint-Finance/glow-v1/commit/fa1b70f028282bf054a21a63e3e2ef7ad79b9ccb
https://github.com/Blueprint-Finance/glow-v1/commit/1ef1ff76a3c8395fa3b14fdb1abd6e2bbb7a53c6
https://github.com/Blueprint-Finance/glow-v1/commit/fef8113b0dca5e19f11c6c9e9f3a82f05f8030a1
https://github.com/Blueprint-Finance/glow-v1/commit/6a40da622c2aa62f095c3aa1fa88de061807529a
https://github.com/Blueprint-Finance/glow-v1/commit/4839576eb51eff693a244440af672a4f1e19cabd
https://github.com/Blueprint-Finance/glow-v1/commit/295c8a7a4729cd276e98acb0333a7bfc52b9178c
https://github.com/Blueprint-Finance/glow-v1/commit/f6d76b1f42486c14161da92bc318b1e7a479ff70

SECURITY ANALYSIS

INCORRECT FEES HANDLING

USERS MAY PAY PERFORMANCE FEES FROM
UNREALIZED PROFITS

MISSING TOKEN 2022 EXTENSIONS VALIDATION

INSUFFIENT OPERATOR PERMISSIONS CHECK

INCORRECT PENDING WITHDRAWAL SHARES
CALCULATION

RELIANCE ON MANUAL OR OFF-CHAIN ACTIONS

INCORRECT REDUNDANT POSITION FRESHNESS
VALIDATION

MISSING INSTRUCTIONS TO WITHDRAW UNCOLLECTED
FEES

UNNECESSARY TOKEN PROGRAM RESOLUTION

RISK LEVEL

CRITICAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

REMEDIATION DATE

SOLVED - 11/07/2025

SOLVED - 11/07/2025

PARTIALLY SOLVED -
10/22/2025

SOLVED - 10/22/2025

SOLVED - 10/22/2025

ACKNOWLEDGED -
11/05/2025

SOLVED - 11/23/2025

FUTURE RELEASE -
10/24/2025

SOLVED - 11/23/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

PASSING UNNECESSARY ACCOUNTS INFORMATIONAL SOLVED - 10/22/2025

7. FINDINGS 8 TECH DETAILS

7.1 INCORRECT FEES HANDLING
/] CRITICAL

Description

The vault’s management and performance fees accounting is implemented incorrectly, resulting in an

inflated exchange rate and inaccurate user withdrawals.

Management fees handling expected scenario

« A user deposits 1,000 tokens and receives 1,000 shares (exchange rate = 1.0).

« QOver one year, a 1% annual management fee is accrued.

« The total token balance should decrease by 1%, reducing the exchange rate to 0.99.

« When the user withdraws, they should receive 990 tokens, reflecting the management fee deduction.

However, in the current implementation, the method Vault::update_vault incorrectly adds the accrued
management fees to the vault’s total token balance. Since the vault reserve already contains the
uncollected management fees, this addition is redundant and causes the vault’s total assets to be
overstated. This logic error leads to artificial inflation of the exchange rate. As a result, users withdrawing
funds after management fees are accrued will receive more tokens than expected, effectively bypassing

the management fee deduction and causing accounting inconsistencies.

programs/vault/src/state/vault.rs

252 | // Deposit tokens are the sum of idle tokens, operator tokens
253 | let total_tokens = operator_tokens

254 .checked_add(vault_reserve.amount)

255 .ok_or(crate: :ErrorCode: :Overflow)?

256 .checked_add(self.uncollected_management_fees)
257 .ok_or(crate: :ErrorCode: :Overflow)?;

258 | self.deposit_tokens = total_tokens;

Performance fees handling expected scenario

o A user deposits 1,000 tokens and receives 1,000 shares (exchange rate = 1.0).

« The vault’s exchange rate later increases to ex. 1.3 due to operator activity and performance gains.
« The user initiates a withdrawal, redeeming nearly all shares (leaving a minimal amount to make sure
exchange rate will be re-calculated).

« The withdrawal correctly deducts a 1.5% performance fee from the user’s profit, with this fee
remaining in the vault reserve.

« The vault reserve therefore holds both the user’s unwithdrawn share tokens and the withheld
performance fee.

However, during the next vault update, the method Vault::update_vault incorrectly recalculates the total

deposited tokens (vault.deposit_tokens) as the sum of:

« The vault reserve amount,
« The operator’s token balance, and
« Uncollected management fees.

Because the vault reserve already includes the withheld performance fees, this addition double-counts
those tokens, artificially inflating the vault’s reported total assets and, consequently, the exchange rate.
This issue leads to an inaccurate exchange rate, allowing users to withdraw more tokens than they should
be entitled to, effectively reducing the protocol’s fee revenue and creating accounting inconsistencies within

the vault.

programs/vault/src/state/vault.rs

252 | // Deposit tokens are the sum of idle tokens, operator tokens
253 | let total_tokens = operator_tokens

254 .checked_add(vault_reserve.amount)

255 .ok_or(crate: :ErrorCode: :Overflow)?

256 .checked_add(self.uncollected_management_fees)
257 .ok_or(crate: :ErrorCode: :Overflow)?;

258 | self.deposit_tokens = total_tokens;

Proof of Concept

Performance fees flow:

« Auser deposits 1,000 tokens and receives 1,000 shares (exchange rate = 1.0).

« The vault’s exchange rate later increases to 1.3 due to operator activity and performance gains.

« The user initiates a withdrawal, redeeming nearly all shares (leaving a minimal dust amount).

o The withdrawal correctly deducts a 1.5% performance fee from the user’s profit, with this fee remaining

in the vault reserve.
« Next vault update incorrectly calculate the deposit tokens and consequently the exchange rate.

// Configure vault and the performance fees
sol_vault
.configure_vault(VaultConfig {
: Some(150), // set performance fees to 1.5 %
: None,
: Some(0b00000111),
: Some(ub4:: D,
: Some(ub4:: D,
: None,
: Some(*b"vault ",
: Some(env.sol_oracle),
: Some(1_000_000),
: Some(1_000),

.with_signer(&ctx.airspace_authority)
.send_and_confirm(&ctx.rpc())
.await?;

// ...

// Deposit user tokens

let user_deposit = 1000 * ;
sol_vault.deposit(

&user_address,

&user_address,

None,

::shift(user_deposit),

D)
.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;

4 oo

// Update operator wallet position to simulate increase in performance
sol_vault
.update_operator_wallet_position(
operator_address,
: : from(2000000 *),

.with_signer(&operator_wallet)
.send_and_confirm(&ctx.rpc())
.await?;

/7 ...

// Accrue user performance fees

sol_vault
.accrue_performance_fees(vault_user_address)
.without_signer()
.send_and_confirm(&ctx.rpc())
.await?;

77 o

// Initiate withdrawal
sol_vault
.initiate_withdrawal(
user_address,
vault.deposit_shares - vault.minimum_shares_dust_threshold - 1, // making sure there is at least
// vault.deposit_shares, // withdraw all
None,

.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;

let : anchor_spl: :token: :TokenAccount =
/...

// Finalize withdrawal request

sol_vault
.execute_vault_withdrawal(user_address, 0)
.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;

let : anchor_spl: :token: :TokenAccount =
get_anchor_account(&ctx.rpc(), &vault.vault_reserve).await?;

let : Vault = get_anchor_account(&ctx.rpc(), &sol_vault.address).await?;

let rate = vault.token_to_share_exchange_rate(vault.last_update_timestamp);

println!("==> After user withdrawal");

let : anchor_spl::token: :TokenAccount =
get_anchor_account(&ctx.rpc(), &vault.vault_reserve).await?;

println!("reserve_account.amount = {}", reserve_account.amount);
println!("Exchange rate = {}", rate.unwrap());
println!("Deposit tokens = {}", vault.deposit_tokens);
println!("Operator tokens = {}", vault.operator_tokens);
println!("Deposit shares = {}", vault.deposit_shares);
println!(

"Uncollected perf fees = {}",

vault.uncollected_performance_fees

D5

println!("----------- ")

let user_balance_before = user_token_account.amount;

let : anchor_spl: :token: : TokenAccount =

get_anchor_account(&ctx.rpc(), &user_sol_ata).await?;
let user_balance_after = user_token_account.amount;
println!(
"User token account balance after withdrawal = {}",
user_token_account.amount
DK
let withdrawn = user_balance_after - user_balance_before;
println!("withdrawn = {}", withdrawn);
println!("Initial deposit = {user_deposit}");
println!(
"Profit = Withdrawn - initial deposit = {}",
user_balance_after - user_deposit

DK
println!(
"Profit in percent = {} %",
(user_balance_after - user_deposit) as f64 * 100.0 / user_deposit as fo4

)3
// Update the vault
sol_vault
.update_vault_balances()
.without_signer()
.send_and_confirm(&ctx.rpc())
.await?;
let : anchor_spl::token: :TokenAccount =
get_anchor_account(&ctx.rpc(), &vault.vault_reserve).await?;
let : Vault = get_anchor_account(&ctx.rpc(), &sol_vault.address).await?;

let rate = vault.token_to_share_exchange_rate(vault.last_update_timestamp);

println!("==> After final vault update:");

let : anchor_spl::token: :TokenAccount =
get_anchor_account(&ctx.rpc(), &vault.vault_reserve).await?;

println!("reserve_account.amount = {}", reserve_account.amount);
println!("Exchange rate = {}", rate.unwrap());
println!("Deposit tokens = {}", vault.deposit_tokens);
println!("Operator tokens = {}", vault.operator_tokens);
println!("Deposit shares = {}", vault.deposit_shares);
println!(
"Uncollected perf fees = {}",
vault.uncollected_performance_fees
DK
println!("----------- ")

==> After user withdrawal
reserve_account.amount = 4497581942
Exchange rate = 1.3006993006
Deposit tokens = 1302

Operator tokens = 0

Deposit shares = 1001

Uncollected perf fees = 4500000000

User token account balance after withdrawal = 1295502418058
withdrawn = 1295502418058

Initial deposit = 1808080080888.

Profit = Withdrawn - initial deposit = 295502418058
Profit in percent = 29.5502418058 %

==> After final vault update:
reserve_account.amount = 4497581942

Exchange rate = 4493088.8531468531

Deposit tokens = 4497581942

Operator tokens = 0

Deposit shares = 1001

Uncollected perf fees = 4500000000

Management fees flow:

1. A user deposits 1,000 tokens and receives 1,000 shares (exchange rate = 1.0).

2. Over one year, a 1% annual management fee is accrued.

3. The total token balance should decrease by 1%, reducing the exchange rate to 0.99.
4. However the deposit tokens value increases and the exchange rate remains 1.0.

// Configure the vault and the management fee
sol_vault
.configure_vault(VaultConfig {
: None,
: Some(150), // set management fee
: Some(0b00000111),
: Some(ub4:: D,
: Some(u64: :MAX),
: None,
: Some(*b"vault ",
: Some(env.sol_oracle),
: Some(1_000_000),
: Some(1_000),
1)
.with_signer(&ctx.airspace_authority)
.send_and_confirm(&ctx.rpc())
.await?;

/7.

// Deposit user tokens
let user_deposit = 1000 * ;
sol_vault.deposit(
&user_address,
&user_address,
None,
::shift(user_deposit),

.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;

let : Vault = get_anchor_account(&ctx.rpc(), &sol_vault.address).await?;
let rate = vault.token_to_share_exchange_rate(vault.last_update_timestamp);
println!("==> Before time warp");
println!("Exchange rate = {}", rate.unwrap());
println!("Deposit tokens = {}", vault.deposit_tokens);
println!("Operator tokens = {}", vault.operator_tokens);
println!("Deposit shares = {}", vault.deposit_shares);
println!(
"Uncollected management fees = {}",
vault.uncollected_management_fees

);
println!("----------- "y;

// Jump forward 1 year in time and update the vault to simulate 1 year of management fees accrual
let clock = ctx.rpc().get_clock().await?;

ctx.solana
.context_mut()
.await
.warp_to_timestamp(clock.unix_timestamp + 3600 * 24 * 365)
.await?;

sol_vault
.update_vault_balances()
.without_signer()
.send_and_confirm(&ctx.rpc())
.await?;

let : Vault = get_anchor_account(&ctx.rpc(), &sol_vault.address).await?;
let rate = vault.token_to_share_exchange_rate(vault.last_update_timestamp);
println!("==> After time warp");
println!("Exchange rate = {}", rate.unwrap());
println!("Deposit tokens = {}", vault.deposit_tokens);
println!("Operator tokens = {}", vault.operator_tokens);
println!("Deposit shares = {}", vault.deposit_shares);
println!(
"Uncollected management fees = {}",
vault.uncollected_management_fees
DK
println!("----------—- ";

==> Before time warp

Exchange rate = 1.0

Deposit tokens = 1000000000000
Operator tokens = 500000000000
Deposit shares = 1000000000000
Uncollected management fees = 0

* accrued user performance fees = 0
==> After time warp

Exchange rate = 1.0

Deposit tokens = 1015000000000
Operator tokens = 500000000000
Deposit shares = 1000000000000
Uncollected management fees = 15000000000

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:H (9.4)

Recommendation

To address this finding, it is recommended to update the vault’s fee accounting logic to ensure that both
management and performance fees are handled correctly. Accrued management and withheld performance
fees should not be added to the vault’s total token balance, as they are already represented within the
vault reserve. The vault’s total asset value should reflect only active user deposits and operator balances,
ensuring the exchange rate accurately accounts for fee deductions and maintains consistent and
transparent vault accounting.

Remediation Comment

SOLVED: The Glow team resolved this finding by correcting the management and performance fees
accounting and ensuring the program correctly tracks the uncollected fee amounts and excludes these
amounts during exchange rate calculation.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/0299a8ad54e11eb70c1536¢ba3f4b38d065¢6153

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:H
https://github.com/Blueprint-Finance/glow-v1/commit/0299a8ad54e11eb70c1536cba3f4b38d065c6153

7.2 USERS MAY PAY PERFORMANCE FEES FROM UNREALIZED
PROFITS

/] HIGH

Description

The execute_vault_withdrawal instruction allows users to finalize their previously initiated withdrawal
requests. During this process, the instruction updates performance fees and deducts them from the total
token amount to be withdrawn.

The permissionless instruction accrue_performance_fees can also be called at any time before the
withdrawal to calculate performance fees based on the current exchange rate. However, performance fees
are only updated when the current exchange rate exceeds the previously recorded “high-water mark” (the
last highest exchange rate).

This creates a potential vulnerability: if performance fees are accrued while the exchange rate is high, but
the user later withdraws after the exchange rate drops, the user will still pay fees on unrealized profits.
Consequently, users may incur excessive performance fees or be charged fees despite experiencing a net
loss at the time of withdrawal.

168 | // Collect the performance fees proportionately to the remaining balance
169 | let vault_user = &mut ctx.accounts.vault_user;

170 | let performance_fees_to_withhold = if shares == vault_user.total_shares {

171 vault_user.accrued_performance_fees

172 | } else if vault_user.accrued_performance_fees > 0 {

173 let withdrawal_tokens = Numberl28::from_decimal(gross_withdrawal_tokens, 0);
174 let fees = Numberl28::from_decimal(vault_user.accrued_performance_fees, 0);
175 let total_tokens = Numberl28::from_decimal(total_tokens, 0);

176 withdrawal_tokens

177 .safe_div(total_tokens)?

178 .safe_mul(fees)?

179 .as_ue4(0)

180 .minCvault_user.accrued_performance_fees)

181 | } else {

182 0

183 | 3,

184

185 | // Shares were burned, so remove them from the user's share tally.
186 | vault_user.total_shares = vault_user

187 .total_shares

188 .checked_sub(shares)

189 .ok_or(crate: :ErrorCode: :Overflow)?;

190

191 | let net_withdrawal_tokens =

192 gross_withdrawal_tokens.saturating_sub(performance_fees_to_withhold);
193 | vault_user.accrued_performance_fees = vault_user
194 .accrued_performance_fees

182 .saturating_sub(performance_fees_to_withhold);
1 C

197 "Gross tokens {}, fees held {}",

198 gross_withdrawal_tokens,

199 performance_fees_to_withhold

200 |);

201

202 | tokens: :transfer_tokens(
203 ctx.accounts.underlying_mint_token_program.to_account_info(),

28; ctx.accounts.underlying_mint.to_account_info(),
ctx.accounts.vault_reserve.to_account_info(),

%8? ctx.accounts))

.destination_underlying_token_account

ggg .to_account_info(), .

210 ctx.accounts.vault.to_account_info(),
ctx.accounts.underlying_mint.decimals,

%i% net_withdrawal_tokens,
Some(&seeds),

345 | pub fn accrue_user_performance_fees(

346 &mut self,

347 vault_user: &mut VaultUser,

348 timestamp: 164,

349 |) -> Result<()> {

350 // Get the rate

351 let vault_exchange_rate = self.token_to_share_exchange_rate(timestamp)?;
352

353 // Compare the rate with the user's stored rate.

354 if vault_exchange_rate > *vault_user.last_performance_fee_rate() {

355 // Accrue the fee

356 // = shares * (new_rate - old_rate) * performance fee

357 let rate_delta =

358 vault_exchange_rate.safe_sub(*vault_user.last_performance_fee_rate())?;
359 let shares = Numberl28::from_decimal(vault_user.total_shares, 0);
360 let performance_fee = Numberl28::from_bps(self.performance_fee);

361 let performance_fee = shares.safe_mul(rate_delta)?.safe_mul(performance_fee)?;
36% let performance_fee_tokens = performance_fee.as_u64(0);

36

364 vault_user.accrued_performance_fees += performance_fee_tokens;

ggg *vault_user.last_performance_fee_rate_mut() = vault_exchange_rate;
367 // Increment the vault's performance fees.

368 self.uncollected_performance_fees = self

369 .uncollected_performance_fees

370 .checked_add(performance_fee_tokens)

371 .ok_or(crate: :ErrorCode: :Overflow)?;

372 1

373

374 vault_user.last_update_timestamp = timestamp;
375

377

376 0kC()
}

Proof of Concept

1. User deposits to vault at share exchange rate 1.0.

2. Share exchange rate increases.

3. User performance fees are accrued.

4. Share exchange rate decreases.

5. User withdraws.

/7 ...

// Create and configure a vault

sol_vault

.create_vault(airspace_authority)
.with_signer(&ctx.airspace_authority)
.send_and_confirm(&ctx.rpc())

.await?;
sol_vault

.configure_vault(VaultConfig {

performance_fee: Some(150), // set a performance fee
management_fee: None,
vault_flags: Some(0b00000111),

deposit_limit: Some(u64:: D,

withdrawal_limit: Some(u64: :),

withdrawal_waiting_period: None, // deactivate waiting period
vault_name: Some(*b"vault ",

oracle: Some(env.sol_oracle),
minimum_deposit: Some(1_000_000),
minimum_shares_dust_threshold: Some(1_000),

»

.with_signer(&ctx.airspace_authority)
.send_and_confirm(&ctx.rpc())
.await?;
// ...
// User deposits to the vault
let user_deposit = 1000 * ;

L
sol_vault.deposit(
&user_address,
&user_address,
None,
TokenChange: :shift(user_deposit),

DR
]

.with_signer(&user)
.send_and_confirm(&ctx.rpc())

.await?;
/...
// Update operator's wallet position to simulate increase of the share exchange rate
sol_vault
.update_operator_wallet_position(
operator_address,
Numberl128: : from(2000000 * D,
D)
.with_signer(&operator_wallet)
.send_and_confirm(&ctx.rpc())
.await?;
/...
// Accrue user performance fee at high share exchange rate
sol_vault
.accrue_performance_fees(vault_user_address)
.without_signer()
.send_and_confirm(&ctx.rpc())
.await?;
// ...

// Update operator's wallet position to simulate decrease of the share exchange rate
sol_vault
.update_operator_wallet_position(
operator_address,
Numberi128: : from(1500000 * D,

.with_signer(&operator_wallet)
.send_and_confirm(&ctx.rpc())
.await?;
// ...
// Initiate withdrawal of all shares
let pending_pda = sol_vault.derive_pending_withdrawals(&user_address);
sol_vault
.create_vault_pending_withdrawal(user_address, user_address)
.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;

sol_vault
.initiate_withdrawal(
user_address,
vault.deposit_shares, // withdraw all
None,

.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;

// F{ﬁalize the withdrawal request
let vault: Vault = get_anchor_account(&ctx.rpc(), &sol_vault.address).await?;
let rate = vault.token_to_share_exchange_rate(vault.last_update_timestamp)?;

let gross_tokens = Numberl128::from(vault_user.total_shares) * rate;

let profit_before_fee = gross_tokens - Numberl28::from(user_deposit);

let perf_fee = profit_before_fee * Numberl28::from_bps(vault.performance_fee);
let net_tokens = gross_tokens - perf_fee;

sol_vault
.execute_vault_withdrawal(user_address, 0)
.with_signer(&user)
.send_and_confirm(&ctx.rpc())
.await?;
// ...
// Perform checks
let vault: Vault = get_anchor_account(&ctx.rpc(), &sol_vault.address).await?;
let rate = vault.token_to_share_exchange_rate(vault.last_update_timestamp);

let user_balance_before = user_token_account.amount;

let user_token_account: anchor_spl::token::TokenAccount =
get_anchor_account(&ctx.rpc(), &user_sol_ata).await?;

let user_balance_after = user_token_account.amount;

let withdrawn = user_balance_after - user_balance_before;

(net_tokens, Numberl28::from(withdrawn));

[2025-10-15T11:07:29.647461000Z DEBUG solana_runtime::message_processor::stable_log] Program log: Instruction: ExecuteVaultWithdrawal
[2025-10-15T11:07:29.651084000Z DEBUG solana_runtime::message_processor::stable_log] Program TokenzQdBNbLqP5VEhdKAS6EPFLC1PHNBqCXEpPXUEb invoke [2]
[2025-10-15T11:07:29.651401000Z DEBUG solana_runtime::message_processor::stable_log] Program log: Instruction: Burn
[2025-10-15T11:07:29.652256000Z DEBUG solana_runtime::message_processor::stable_log] Program TokenzQdBNbLqP5VEhdKAS6EPFLC1PHNBqCXEpPxUEb consumed 5324 of 170439 compute units
[2025-10-15T11:07:29.652279000Z DEBUG solana_runtime::message_processor::stable_log] Program TokenzQdBNbLgPS5VEhdKAS6EPFLC1PHNBqCXEpPXUED success
[2025-10-15T11:07:29.652485000Z DEBUG solana_runtime::message_processor::stable_log] Program log: Gross tokens 1050000000000, fees held 4500000000
[2025-10-15T11:07:29.652973000Z DEBUG solana_runtime::message_processor::stable_log] Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQSDA invoke [2]
[2025-10-15T11:07:29.653371000Z DEBUG solana_runtime::message_processor::stable_log] Program log: Instruction: TransferChecked
[2025-10-15T11:07:29.654386000Z DEBUG solana_runtime::message_processor::stable_log] Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQSDA consumed 6239 of 161154 compute units
[2025-10-15T11:07:29.654410000Z DEBUG solana_runtime::message_processor::stable_log] Program TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQSDA success
[2025-10-15T11:07:29.655109000Z DEBUG solana_runtime::message_processor::stable_log] Program gwvlybUe2JVEpjdWARK1PjZUVY5xdNUCRhu24tgYtxa consumed 48470 of 200000 compute units
[2025-10-15T11:07:29.655133000Z DEBUG solana_runtime::message_processor::stable_log] Program gwvlybUe2JVEpjdWARK1PjZUVY5xdNUCRhu24tgYtxa success
thread 'test_performance_fees' panicked at tests/hosted/tests/halborn.rs:847:5
assertion “left == right’ failed

left: 104.925

right: 104.55
note: run with "RUST_BACKTRACE=1" environment variable to display a backtrace

Summary [0.759s] 1 test run: 0@ passed, 1 failed, 259 skipped
FAIL [0.748s] hosted-tests::halborn test_performance_fees
error: test run failed

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:M (7.5)

Recommendation

To address this issue, allow the performance fee to be calculated based on the exchange rate at the time of
withdrawal. This will charge a fair performance fee and prevent charging a performance fee on unrealized
profit.

Remediation Comment

SOLVED: The Glow team resolved this finding by implementing a time-locking mechanism where the
performance fees can be accrued only once per 28 days. This limits intentional performance fee accrual

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:M

abuse when the exchange rate is temporarily high but at the same time charges performance fees on
dormant accounts periodically.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/falb70f028282bf054a21a63e3e2ef7ad79b9cch

https://github.com/Blueprint-Finance/glow-v1/commit/fa1b70f028282bf054a21a63e3e2ef7ad79b9ccb

7.3 MISSING TOKEN 2022 EXTENSIONS VALIDATION
/] LOW

Description

The create_vault instruction allows an authorized user to create a new vault and specify any mint as the
underlying asset. However, the instruction does not validate which Token-2022 extensions are enabled on
the selected mint. This omission allows the use of tokens with potentially dangerous extensions, which
could compromise the security or integrity of the protocol.

Using an underlying asset with certain Token-2022 extensions could introduce significant risks:

« PermanentDelegate — Allows a delegate to transfer or burn assets locked in the vault, potentially
leading to loss of funds.

« Pausable - Enables a mint authority to pause token transfers, which could disrupt normal protocol
operations.

« TransferFee — Applies fees to transfers, potentially causing accounting inconsistencies or unexpected
behavior when assets move in or out of the vault.

« TransferHook — May require additional accounts needed by the transfer hook program, potentially

causing a denial of service.

68 | /// Underlying asset mint
69 | pub underlying_mint: Box<InterfaceAccount< , Mint>>,

BVSS
AQ:S/AC:L /AX:L/R:N/S:U/C:N/A:C/1:C/D:C/Y:N (3.0)

Recommendation

To address this finding, it is recommended to validate the Token 2022 extensions during vault creation and
disallow adding mints with potentially dangerous and unsupported extensions. In case underlying mints with
potentially dangerous extensions are required (such as the PYUSD with the PermanentDelegate extension),
implement a whitelist to make sure only trusted mints can be used.

Remediation Comment

PARTIALLY SOLVED: The Glow team partially solved this finding by adding validation of the TransferFee
Token extension. However, the following extensions are still not fully validated, and their validation is
planned for future releases:

« PermanentDelegate

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:C/Y:N

« Pausable
» TransferHook

Because this instruction can only be invoked by an authorized account, and the effects of these token
extensions are well understood, the lack of full validation is considered a low-risk issue.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/iefiff76a3c8395fa3bi4fdblabdBe2bbb7a53c6

https://github.com/Blueprint-Finance/glow-v1/commit/1ef1ff76a3c8395fa3b14fdb1abd6e2bbb7a53c6

7.4 INSUFFIENT OPERATOR PERMISSIONS CHECK
/] LOW

Description

The program requires that a vault operator hold the OPERATE_VAULTS permission. This permission is
correctly verified when assigning an operator admin to a vault.

However, it is not validated in several other operator instructions — most importantly:

e« update_operator_wallet_position
o« operator_withdraw_from_vault
o operator_transfer_to_margin

These instructions allow an operator to transfer tokens from the vault and manipulate the valuation of
operator positions.

Failing to verify the required OPERATE_VAULTS permission in these cases could allow an operator whose
permissions were revoked to continue performing privileged actions, such as withdrawing funds or altering

the vault’s share exchange rate, leading to potential malicious activity.

programs/vault/src/instructions/valuation/update_operator_wallet_position.rs

39 | /// The operator whose position is being updated

40 | #[account(

41 mut,

42 seeds = [, vault.key().as_ref()],

43 bump,

44 has_one = vault,

45 |)]

46 | pub operator: AccountlLoader< , VaultOperator>,
BVSS

AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C (2.5)

Recommendation

To address this issue, it is recommended to validate that an operator has valid permissions when invoking
the instructions update_operator_wallet_position, operator_withdraw_from_vault and
operator_transfer_to_margin and consider restricting other operator-related instructions.

Remediation Comment

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C

SOLVED: The Glow team resolved this finding by explicitly validating that an operator has OPERATE_VAULTS
permission before executing the update_operator_wallet_position, operator_withdraw_from_vault
or operator_transfer_to_margin instruction.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/fef8113b0dcabel 9f11c6¢c9e9f3a82f05f8030ai

https://github.com/Blueprint-Finance/glow-v1/commit/fef8113b0dca5e19f11c6c9e9f3a82f05f8030a1

7.5 INCORRECT PENDING WITHDRAWAL SHARES
CALCULATION

// INFORMATIONAL

Description

The cancel_vault_pending_withdrawal instruction allows a user to cancel a previously initialized
withdrawal request. However, it incorrectly logs the total number of pending withdrawal shares. When a
withdrawal is canceled, the refunded shares are added to the total instead of being subtracted, resulting in
an inaccurate log value.

The severity of this issue is informational, since the vault_user.pending_withdrawal_shares value is
not used in any on-chain calculations. However, this inconsistency may affect off-chain consumers of the

data—such as front-end applications—potentially leading to display errors or unexpected behavior.

programs/vault/src/instructions/user/cancel_vault_pending_withdrawal.rs

111 | let refund_shares = pending.pending_shares;
112 | let vault_user = &mut ctx.accounts.vault_user;
113 | vault_user.pending_withdrawal_shares = vault_user

114 .pending_withdrawal_shares

115 .checked_add(refund_shares)

116 .ok_or(crate: :ErrorCode: :Overflow)?;
BVSS

AQ:A/AC:L/AX:L/R:F/S:U/C:N/A:N/1:M/D:N/Y:N (1.3)

Recommendation

To address this finding, it is recommended to decrease the vault_user.pending_withdrawal_shares
value by the number of shares to refund.

Remediation Comment

SOLVED: The Glow team resolved this finding by decreasing the vault_user.pending_withdrawal_shares
value by the number of shares to refund.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/6a40da622¢c22a62f095c3aa1fa88de061807529a

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/Blueprint-Finance/glow-v1/commit/6a40da622c2aa62f095c3aa1fa88de061807529a

7.6 RELIANCE ON MANUAL OR OFF-CHAIN ACTIONS
// INFORMATIONAL

Description

At its current development stage, the protocol relies on manual and off-chain interventions. These include
the following:

« A permissioned operator is required to withdraw user-deposited vault funds in order to perform
external fund management operations outside the Glow protocol.

« A permissioned operator is also responsible for providing accurate valuations of their wallet positions.

As a result, users must place full trust in the protocol’s operator to supply correct valuation data and
manage funds responsibly.

BVSS
AQ:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:C/D:C/Y:N (1.3)

Recommendation

To address this finding, it is recommended to implement measures that minimize or completely eliminate
the need for manual interventions, and to provide clear, publicly available documentation describing the
protocol’s functionality.

Remediation Comment

ACKNOWLEDGED The Glow team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:P/S:U/C:N/A:N/I:C/D:C/Y:N

7.7 INCORRECT REDUNDANT POSITION FRESHNESS
VALIDATION

// INFORMATIONAL

Description

During deposit or withdrawal interactions with the vault, the program verifies that the operator’s position
valuations are up to date and contain fresh data. However, the helper methods
VaultOperator::increase_position_tokens and VaultOperator::decrease_position_tokens
perform this check incorrectly.

These methods validate that the position was updated within the next 30 seconds, rather than within the
last 30 seconds, causing the freshness check to always pass, even when the position data is stale.

The severity of this issue is informational, since a correct freshness validation is also performed by the
Vault::update_vault method, which is called immediately after increase_position_tokens and
decrease_position_tokens . As a result, this logic error does not impact the program’s behavior but may
cause confusion or reduce code reliability.

programs/vault/src/state/operator.rs

158 | pub fn increase_position_tokens(

159 &mut self,

160 destination_kind: PositionDestinationKind,

161 destination_address: Pubkey,

162 amount: u64,

163 timestamp: 164,

164 |) -> Result<()> {

165 let position = self.get_position_mut(destination_kind, destination_address)?;
166 // The position must have been updated in the last 30 seconds
167 C

168 timestamp + 30 >= position.last_update_ts,

169 ErrorCode: :PositionStale

170);

programs/vault/src/state/operator.rs

181 | pub fn decrease_position_tokens(

182 &mut self,

183 destination_kind: PositionDestinationKind,

184 destination_address: Pubkey,

185 amount: u64,

186 timestamp: 164,

187 |) -> Result<()> {

188 let position = self.get_position_mut(destination_kind, destination_address)?;
189 // The position must have been updated in the last 3@ seconds
199 (

191 timestamp + 30 >= position.last_update_ts,

192 crate: :ErrorCode: :PositionStale

193);

BVSS
AQ:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.6)

Recommendation

To address this finding, it is recommended to either correct and align the freshness check in the
increase_position_tokens and decrease_position_tokens methods to the check implemented in
Vault::update_vault method or alternatively remove the check from the increase_position_tokens
and decrease_position_tokens methods and keep it only in the Vault::update_vault method.

Remediation Comment

SOLVED: The Glow team resolved this finding by correcting the freshness check in the
increase_position_tokens and decrease_position_tokens methods.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/4839576eb51eff693a244440af672a4f1ed9cabd

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Blueprint-Finance/glow-v1/commit/4839576eb51eff693a244440af672a4f1e19cabd

7.8 MISSING INSTRUCTIONS TO WITHDRAW UNCOLLECTED
FEES

// INFORMATIONAL

Description

The protocol can collect fund management and performance fees depending on each vault’s configuration.
These fees are recorded and stored in the vault’s reserve account.

However, the program does not include any instruction that allows these accumulated fees to be withdrawn.
As a result, the fees become effectively locked, since the reserve account is owned by a Program-Derived
Address (PDA), and any transfer from it must be authorized by the program itself.

BVSS
AQ:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N (0.5)

Recommendation

To address this finding, it is recommended to implement dedicated instructions to withdraw the
management and performance fees and update the vault state.

Remediation Comment

FUTURE RELEASE: The Glow team acknowledged this finding and plans to remediate this finding in the next
release.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:F/S:U/C:N/A:C/I:N/D:N/Y:N

7.9 UNNECESSARY TOKEN PROGRAM RESOLUTION
// INFORMATIONAL

Description

Several instructions use the tokens::resolve_token_program helper function to determine the correct
Token program for a given mint. However, this on-chain program resolution is unnecessary, since the same
logic can be performed off-chain by simply providing the appropriate Token program (Token or Token2022)
directly to the instruction. During token related operations, the token programs already verify that the
correct token program is used and return an error if not.

Performing this check on-chain increases compute unit usage and therefore raises transaction costs
without providing any additional security or functional benefit.

programs/vault/src/instructions/operator/operator_withdraw_from_vault.rs

8 | // Token programs (classic + 2022)
87 | pub token_program: Interface< , TokenInterface>,
88 | pub token_2022_program: Interface< , TokenInterface>,

133 | // Resolve correct token program (Token vs Token-2022) by the mint owner
134 | let underlying_mint = ctx.accounts.underlying_mint.to_account_info();
135 | let token_program = tokens::resolve_token_program(

136 &underlying_mint,
137 &ctx.accounts.token_program.to_account_info(),
138 &ctx.accounts.token_2022_program.to_account_info(),
139 | H7?;
BVSS

AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

To address this finding, it is recommended to follow these guidelines:

« If the required Token program is known in advance, require the given program by using the appropriate
Anchor data types Program<'info, Token> or Program<'info, Token2022> .

« If the required Token program is not known in advance, use the Interface<'info, TokenInterface>
Anchor data type.

« If aninstruction may require both Token and Token2022 programs, but it is not known in advance,
which mint will require which program, use separate Interface account types for each mint such as and
omit the token::resolve_token_program helper function.

pub mintl_token_program: Interface< , TokenInterface>,
pub mint2_token_program: Interface< , TokenInterface>,

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

Remediation Comment

SOLVED: The Glow team resolved this finding by removing the tokens::resolve_token_program helper
function and requiring the corresponding token program to be passed.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/295c8a7a4729cd276e98acb0333a7bfc52b9178c¢

7.10 PASSING UNNECESSARY ACCOUNTS
// INFORMATIONAL

Description

The instructions initiate_withdrawal and cancel_pending_withdrawal require the system_program
account that is not used and thus is unnecessary. Also, both instruction require the underlying_mint
account. However this account is used only for seeds derivation and is not read or written to. It is therefore
more efficient to pass this account as instruction parameter instead as an instruction account.

programs/vault/src/instructions/user/initiate_withdrawal.rs

85 | /// Underlying mint (asset) from the vault
86 | pub underlying_mint: UncheckedAccount<'info>, // equals vault.underlying_mint

88 | pub token_program: Interface< , TokenInterface>,
89 | pub system_program: Program<'info, System>

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

To address this finding, it is recommended to remove any unused accounts. In case only public key is
needed, it is preferable to pass it as instruction parameter.

Remediation Comment

SOLVED: The Glow team resolved this finding by removing the unnecessary accounts.

Remediation Hash
https://github.com/Blueprint-Finance/glow-vi/commit/f6d76b1f42486¢c14161da92bc318bile7a479ff70

https://github.com/Blueprint-Finance/glow-v1/commit/295c8a7a4729cd276e98acb0333a7bfc52b9178c
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/glow-v1/commit/f6d76b1f42486c14161da92bc318b1e7a479ff70

8. AUTOMATED TESTING

Halborn used automated security scanners to assist with detection of well-known security issues and

vulnerabilities. Among the tools used was cargo audit, a security scanner for vulnerabilities reported to

the RustSec Advisory Database. All vulnerabilities published in https://crates.io are storedin a
repository named The RustSec Advisory Database. cargo audit is a human-readable version of the

advisory database which performs a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report. However, to better assist the
developers maintaining this code, the auditors are including the output with the dependencies tree, and this
is included in the cargo audit output to better know the dependencies affected by unmaintained and
vulnerable crates.

Cargo Audit Resultls

1D

CRATE

DESCRIPTION

RUSTSEC-2025-0024

crossheam-channel

crossbeam-channel: double free on Drop

RUSTSEC-2024-0344

curve25519-dalek

Timing variability in curve25519-dalek's Scalar29::sub/Scalar52:

:sub

RUSTSEC-2022-0093

ed25519-dalek

Double Public Key Signing Function Oracle Attack on €d25519-dalek

RUSTSEC-2025-0022 openssl Use-After-Free in Md: : fetch and Cipher::fetch
RUSTSEC-2025-0009 ring Some AES functions may panic when overflow checking is enabled.
RUSTSEC-2025-0009 ring Some AES functions may panic when overflow checking is enabled.

RUSTSEC-2025-0055

tracing-subscriber

Logging user input may result in poisoning logs with ANSI escape sequences

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately

following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the

project’s integrity and addressing potential vulnerabilities introduced by code modifications.

